Asymptotics at infinity of solutions of equations close to Hamiltonian equations

被引:0
作者
L. A. Kalyakin
机构
[1] Russian Academy of Sciences,Institute of Mathematics with Computation Center
关键词
Asymptotic Expansion; Asymptotic Solution; Recursive Formula; Principal Part; Initial Equation;
D O I
10.1007/s10958-009-9332-3
中图分类号
学科分类号
摘要
A nonlinear non-autonomous system of two ordinary differential equations is considered. It is assumed that the equations corresponding to the principal part in the asymptotics at infinity with respect to the independent variable are integrable and written in the action-angle variables. In the case where the lower terms in the equation periodically depend on the angle, the asymptotic expansion at infinity of the two-parametric family of solutions is constructed.
引用
收藏
页码:526 / 542
页数:16
相关论文
共 12 条
[1]  
Boutroux P.(1913)Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations differéntielles du second ordre Ann. Sci. Ec. Norm. Super. 30 265-375
[2]  
Fedoryuk M. V.(1986)WKB method for a second-order nonlinear equation Zh. Vychisl. Mat. Mat. Fiz. 26 196-210
[3]  
Itin A. P.(2000)Capture into resonance in dynamics of a charged particle in a magnetic field and an electrostatic wave Physica D. 141 281-296
[4]  
Neishtadt A. I.(2003)Asymptotics of solutions of the principal resonance equations at infinity Dokl. Ross. Akad. Nauk 388 305-308
[5]  
Vasiliev A. A.(2003)Asimptotics of solutions of the principal resonance equations Teor. Mat. Fiz. 137 142-152
[6]  
Kalyakin L. A.(1998)Perturbation of a degenerate plane wave in the Navier-Stokes system of equations Dokl. Ross. Akad. Nauk 360 328-330
[7]  
Kalyakin L. A.(2006)Intermediate asymptotics for solutions of the degenerate principal resonance Zh. Vychisl. Mat. Mat. Fiz. 46 196-210
[8]  
Kalyakin L. A.(1951)Asymptotic solutions of nonlinear differential equations with variable coefficients Prikl. Mat. Mekh. 23 519-526
[9]  
Kalyakin L. A.(2001)Asymptotics of solutions of differential equations near singular points Trudy Mat. Inst. Ross. Akad. Nauk 232 194-217
[10]  
Kuzmak G. E.(1984)On separation of motions in systems with raplidly rotating phase Prikl. Mat. Mekh. 48 197-204