Deep learning-based prognostic model using non-enhanced cardiac cine MRI for outcome prediction in patients with heart failure

被引:0
|
作者
Yifeng Gao
Zhen Zhou
Bing Zhang
Saidi Guo
Kairui Bo
Shuang Li
Nan Zhang
Hui Wang
Guang Yang
Heye Zhang
Tong Liu
Lei Xu
机构
[1] Beijing Anzhen Hospital,Department of Radiology
[2] Capital Medical University,School of Biomedical Engineering
[3] Sun Yat-Sen University,Cardiovascular Research Centre
[4] Royal Brompton Hospital,National Heart and Lung Institute
[5] Imperial College London,Department of Cardiology
[6] Beijing Anzhen Hospital,undefined
[7] Capital Medical University,undefined
来源
European Radiology | 2023年 / 33卷
关键词
Deep learning; Magnetic resonance imaging; Heart failure; Optical flow; Prognosis;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:8203 / 8213
页数:10
相关论文
共 50 条
  • [31] Deep Learning-Based Time-to-Death Prediction Model for COVID-19 Patients Using Clinical Data and Chest Radiographs
    Matsumoto, Toshimasa
    Walston, Shannon Leigh
    Walston, Michael
    Kabata, Daijiro
    Miki, Yukio
    Shiba, Masatsugu
    Ueda, Daiju
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (01) : 178 - 188
  • [32] Improving the Prognostic Evaluation Precision of Hospital Outcomes for Heart Failure Using Admission Notes and Clinical Tabular Data: Multimodal Deep Learning Model
    Gao, Zhenyue
    Liu, Xiaoli
    Kang, Yu
    Hu, Pan
    Zhang, Xiu
    Yan, Wei
    Yan, Muyang
    Yu, Pengming
    Zhang, Qing
    Xiao, Wendong
    Zhang, Zhengbo
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2024, 26
  • [33] Deep Learning-Based Prediction Model Using Radiography in Nontuberculous Mycobacterial Pulmonary Disease
    Lee, Seowoo
    Lee, Hyun Woo
    Kim, Hyung-Jun
    Kim, Deog Kyeom
    Yim, Jae-Joon
    Yoon, Soon Ho
    Kwak, Nakwon
    CHEST, 2022, 162 (05) : 995 - 1005
  • [34] Preoperative Extrapancreatic Extension Prediction in Patients with Pancreatic Cancer Using Multiparameter MRI and Machine Learning-Based Radiomics Model
    Xie, Ni
    Fan, Xuhui
    Xie, Haoran
    Lu, Jiawei
    Yu, Lanting
    Liu, Hao
    Wang, Han
    Yin, Xiaorui
    Li, Baiwen
    ACADEMIC RADIOLOGY, 2023, 30 (07) : 1306 - 1316
  • [35] Deep Learning-based Recurrence Prediction in Patients with Non-muscle-invasive Bladder Cancer
    Lucas, Marit
    Jansen, Ilaria
    van Leeuwen, Ton G.
    Oddens, Jorg R.
    de Bruin, Daniel M.
    Marquering, Henk A.
    EUROPEAN UROLOGY FOCUS, 2022, 8 (01): : 165 - 172
  • [36] Prediction of Motor Outcome of Stroke Patients Using a Deep Learning Algorithm with Brain MRI as Input Data
    Shin, Hyunkwang
    Kim, Jeoung Kun
    Choo, Yoo Jin
    Choi, Gyu Sang
    Chang, Min Cheol
    EUROPEAN NEUROLOGY, 2022, 85 (06) : 460 - 466
  • [37] Machine Learning-Based Prediction of Clinical Frailty Scale Based on Gait Analysis in Elderly Patients With Heart Failure
    Nakao, Motoki
    Nagai, Toshiyuki
    Mizuguchi, Yoshifumi
    Takahashi, Yuki
    Abe, Takahiro
    Kakinoki, Shigeo
    Imagawa, Shogo
    Matsutani, Kenichi
    Saito, Takahiko
    Takahashi, Masashige
    Hirata, Kenji
    Ogawa, Takahiro
    Shimizu, Takuto
    Otsu, Manabu
    Chiyo, Kunihiro
    Anzai, Toshihisa
    CIRCULATION, 2023, 148
  • [38] The Feasibility of Using a Deep Learning-Based Model to Determine Cardiac Computed Tomographic Contrast Dose
    Kobayashi, Naoki
    Masuda, Takanori
    Nakaura, Takeshi
    Shiraishi, Kaori
    Uetani, Hiroyuki
    Nagayama, Yasunori
    Kidoh, Masafumi
    Funama, Yoshinori
    Hirai, Toshinori
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2024, 48 (01) : 85 - 91
  • [39] Machine learning-based model for predicting 1 year mortality of hospitalized patients with heart failure
    Tohyama, Takeshi
    Ide, Tomomi
    Ikeda, Masataka
    Kaku, Hidetaka
    Enzan, Nobuyuki
    Matsushima, Shouji
    Funakoshi, Kouta
    Kishimoto, Junji
    Todaka, Koji
    Tsutsui, Hiroyuki
    ESC HEART FAILURE, 2021, 8 (05): : 4077 - 4085
  • [40] A novel and accurate deep learning-based Covid-19 diagnostic model for heart patients
    Hassan, Ahmed
    Elhoseny, Mohamed
    Kayed, Mohammed
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (07) : 3397 - 3404