A new clinical model for predicting lymph node metastasis in T1 colorectal cancer

被引:2
|
作者
Wang, Kai [1 ,3 ]
He, Hui [2 ,3 ]
Lin, Yanyun [2 ,3 ]
Zhang, Yanhong [2 ,3 ]
Chen, Junguo [2 ,3 ,5 ]
Hu, Jiancong [2 ,3 ]
He, Xiaosheng [2 ,3 ,4 ]
机构
[1] Sun Yat Sen Univ, Affiliated Hosp 6, Dept Anaesthesia, Guangzhou, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Affiliated Hosp 6, Dept Gen Surg Colorectal Surg, Guangzhou, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Affiliated Hosp 6, Guangdong Inst Gastroenterol, Guangdong Prov Key Lab Colorectal & Pelv Floor Dis, Guangzhou, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Affiliated Hosp 6, Biomed Innovat Ctr, Guangzhou, Guangdong, Peoples R China
[5] Sun Yat Sen Univ, Affiliated Hosp 6, Thorac Canc Ctr, Dept Thorac Surg, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
T1 colorectal cancer (CRC); Lymph node metastasis (LNM); Prediction; Sex; Depth of submucosal invasion (DSI); PRACTICE GUIDELINES; RISK; CARCINOMA; SOCIETY; BURDEN; COLON;
D O I
10.1007/s00384-024-04621-y
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Purpose Lymph node metastasis (LNM) is a crucial factor that determines the prognosis of T1 colorectal cancer (CRC) patients. We aimed to develop a practical prediction model for LNM in T1 CRC.Methods We conducted a retrospective analysis of data from 825 patients with T1 CRC who underwent radical resection at a single center in China. All enrolled patients were randomly divided into a training set and a validation set at a ratio of 7:3 using R software. Risk factors for LNM were identified through multivariate logistic regression analyses. Subsequently, a prediction model was developed using the selected variables.Results The lymph node metastasis (LNM) rate was 10.1% in the training cohort and 9.3% in the validation cohort. In the training set, risk factors for LNM in T1 CRC were identified, including depressed endoscopic gross appearance, sex, submucosal invasion combined with tumor grade (DSI-TG), lymphovascular invasion (LVI), and tumor budding. LVI emerged as the most potent predictor for LNM. The prediction model based on these factors exhibited good discrimination ability in the validation sets (AUC: 79.3%). Compared to current guidelines, the model could potentially reduce over-surgery by 48.9%. Interestingly, we observed that sex had a differential impact on LNM between early-onset and late-onset CRC patients.Conclusions We developed a clinical prediction model for LNM in T1 CRC using five factors that are easily accessible in clinical practice. The model has better predictive performance and practicality than the current guidelines and can assist clinicians in making treatment decisions for T1 CRC patients.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A clinical model for predicting lymph node metastasis in submucosal invasive (T1) colorectal cancer
    Fernando Macias-Garcia
    Catuxa Celeiro-Muñoz
    Lucia Lesquereux-Martinez
    Francisco Gude-Sampedro
    Laura Uribarri-Gonzalez
    Ihab Abdulkader
    Ana Alvarez-Castro
    J. Enrique Dominguez-Muñoz
    International Journal of Colorectal Disease, 2015, 30 : 761 - 768
  • [2] A clinical model for predicting lymph node metastasis in submucosal invasive (T1) colorectal cancer
    Macias-Garcia, Fernando
    Celeiro-Munoz, Catuxa
    Lesquereux-Martinez, Lucia
    Gude-Sampedro, Francisco
    Uribarri-Gonzalez, Laura
    Abdulkader, Ihab
    Alvarez-Castro, Ana
    Enrique Dominguez-Munoz, J.
    INTERNATIONAL JOURNAL OF COLORECTAL DISEASE, 2015, 30 (06) : 761 - 768
  • [3] Predictors for lymph node metastasis in T1 colorectal cancer
    Suh, J. H.
    Han, K. S.
    Kim, B. C.
    Hong, C. W.
    Sohn, D. K.
    Chang, H. J.
    Kim, M. J.
    Park, S. C.
    Park, J. W.
    Choi, H. S.
    Oh, J. H.
    ENDOSCOPY, 2012, 44 (06) : 590 - 595
  • [4] CT morphological features for predicting the risk of lymph node metastasis in T1 colorectal cancer
    Li, Suyun
    Li, Zhenhui
    Wang, Li
    Wu, Mimi
    Chen, Xiaobo
    He, Chutong
    Xu, Yao
    Dong, Mengyi
    Liang, Yanting
    Chen, Xin
    Liu, Zaiyi
    EUROPEAN RADIOLOGY, 2023, 33 (10) : 6861 - 6871
  • [5] CT morphological features for predicting the risk of lymph node metastasis in T1 colorectal cancer
    Suyun Li
    Zhenhui Li
    Li Wang
    Mimi Wu
    Xiaobo Chen
    Chutong He
    Yao Xu
    Mengyi Dong
    Yanting Liang
    Xin Chen
    Zaiyi Liu
    European Radiology, 2023, 33 : 6861 - 6871
  • [6] Lymph node metastasis in T1 colorectal cancer: Risk factors and prediction model
    Fujino, Shiki
    Miyoshi, Norikatsu
    Kitakaze, Masatoshi
    Yasui, Masayoshi
    Ohue, Masayuki
    Osawa, Hideki
    Ide, Yoshihito
    Sueda, Toshinori
    Tei, Mitsuyoshi
    Takeda, Takashi
    Danno, Katsuki
    Suzuki, Yozo
    Noura, Shingo
    Ohshima, Kenji
    Morii, Eiichi
    Takahashi, Hidekazu
    Uemura, Mamoru
    Yamamoto, Hirofumi
    Murata, Kohei
    Doki, Yuichiro
    Eguchi, Hidetoshi
    ONCOLOGY LETTERS, 2023, 25 (05)
  • [7] Pathological predictors for lymph node metastasis in T1 colorectal cancer
    Yamauchi, Hitoshi
    Togashi, Kazutomo
    Kawamura, Yutaka J.
    Horie, Hisanaga
    Sasaki, Junichi
    Tsujinaka, Shingo
    Yasuda, Yoshikazu
    Konishi, Fumio
    SURGERY TODAY, 2008, 38 (10) : 905 - 910
  • [8] Pathological predictors for lymph node metastasis in T1 colorectal cancer
    Hitoshi Yamauchi
    Kazutomo Togashi
    Yutaka J. Kawamura
    Hisanaga Horie
    Junichi Sasaki
    Shingo Tsujinaka
    Yoshikazu Yasuda
    Fumio Konishi
    Surgery Today, 2008, 38 : 905 - 910
  • [9] Artificial intelligence predicts lymph node metastasis or risk of lymph node metastasis in T1 colorectal cancer
    Kenta Kasahara
    Kenji Katsumata
    Akira Saito
    Tetsuo Ishizaki
    Masanobu Enomoto
    Junichi Mazaki
    Tomoya Tago
    Yuichi Nagakawa
    Jun Matsubayashi
    Toshitaka Nagao
    Hiroshi Hirano
    Masahiko Kuroda
    Akihiko Tsuchida
    International Journal of Clinical Oncology, 2022, 27 : 1570 - 1579
  • [10] Artificial intelligence predicts lymph node metastasis or risk of lymph node metastasis in T1 colorectal cancer
    Kasahara, Kenta
    Katsumata, Kenji
    Saito, Akira
    Ishizaki, Tetsuo
    Enomoto, Masanobu
    Mazaki, Junichi
    Tago, Tomoya
    Nagakawa, Yuichi
    Matsubayashi, Jun
    Nagao, Toshitaka
    Hirano, Hiroshi
    Kuroda, Masahiko
    Tsuchida, Akihiko
    INTERNATIONAL JOURNAL OF CLINICAL ONCOLOGY, 2022, 27 (10) : 1570 - 1579