(p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-Generalization of Szász–Mirakjan operators and their approximation properties

被引:0
作者
Mustafa Kara
Nazim I. Mahmudov
机构
[1] Eastern Mediterranean University,Department of Mathematics
关键词
-Integers; -Szász–Mirakjan operators; Weighted approximation;
D O I
10.1186/s13660-020-02390-0
中图分类号
学科分类号
摘要
We introduce a new modification of (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-analogue of Szász–Mirakjan operators. Firstly, we give a recurrence relation for the moments of (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-analogue of Szász–Mirakjan operators and present some explicit formulae for the moments and central moments up to order 4. Next, we obtain quantitative estimates for the convergence in the polynomial weighted spaces. In addition, we give the Voronovskaya theorem for the new (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-Szász–Mirakjan operators.
引用
收藏
相关论文
共 91 条
  • [1] Phillips G.M.(1997)Bernstein polynomials based on the Ann. Numer. Math. 4 511-518
  • [2] II’inskii A.(2002)-integers J. Approx. Theory 116 100-112
  • [3] Ostrovska S.(2003)Convergence of generalized Bernstein polynomials J. Approx. Theory 123 232-255
  • [4] Ostrovska S.(2004)-Bernstein polynomials and their iterates Math. Balk. 18 165-172
  • [5] Ostrovska S.(2006)On the limit Rocky Mt. J. Math. 36 1615-1629
  • [6] Ostrovska S.(2007)-Bernstein operators Proc. Indian Acad. Sci. Math. Sci. 117 485-493
  • [7] Ostrovska S.(1999)On the Lupaş Proc. Edinb. Math. Soc. 42 179-190
  • [8] Goodman T.N.T.(1968)-analogue of the Bernstein operator SIAM J. Appl. Math. 16 510-519
  • [9] Oruç H.(2009)Positive linear operators generated by analytic functions Cent. Eur. J. Math. 7 348-356
  • [10] Phillips G.M.(2000)Convexity and generalized Bernstein polynomials Rev. Anal. Numér. Théor. Approx. 29 221-229