A rapid vortex identification method using fully convolutional segmentation network

被引:0
|
作者
Yueqing Wang
Liang Deng
Zhigong Yang
Dan Zhao
Fang Wang
机构
[1] Computational Aerodynamics Institute at China Aerodynamics Research and Development Center,College of Computer
[2] National University of Defense Technology,undefined
来源
The Visual Computer | 2021年 / 37卷
关键词
Vortex identification; Convolutional neural network; Segmentation; Scientific visualization;
D O I
暂无
中图分类号
学科分类号
摘要
Vortex identification methods have been extensively studied in recent years due to their importance in understanding the potential physical mechanism of the flow field. Although demonstrating great success in various scenarios, these methods cannot achieve a compromise between computational speed and accuracy, which restricts their usage in large-scale applications. In specific, local methods provide results rapidly with pool accuracies. By contrast, global methods can obtain reliable results by consuming much more time. To take the advantages of both local and global methods, several methods based on convolutional neural networks are proposed. These methods use local patches around each point and the labels obtained by global methods to train the network. They convert the vortex identification tasks into binary classification problems. In this manner, these methods detect vortices rapidly and robustly. By revisiting these methods, we observe two drawbacks that limit their performance: (i) the large number of parameters and (ii) high computational complexity. To address these issues, we provide a rapid vortex identification method by using a fully convolutional segmentation network in this work. Specifically, we discard the fully connected layers to decrease the number of parameters and design a segmentation network to reduce computational complexity. Intensive experimental results show that the accuracy and recall performance of our method are comparable with those of the global methods. Moreover, the time consumption of our method is less than that of all other methods.
引用
收藏
页码:261 / 273
页数:12
相关论文
共 50 条
  • [31] Fully multi-target segmentation for breast ultrasound image based on fully convolutional network
    Yingtao Zhang
    Yan Liu
    Hengda Cheng
    Ziyao Li
    Cong Liu
    Medical & Biological Engineering & Computing, 2020, 58 : 2049 - 2061
  • [32] Fully multi-target segmentation for breast ultrasound image based on fully convolutional network
    Zhang, Yingtao
    Liu, Yan
    Cheng, Hengda
    Li, Ziyao
    Liu, Cong
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2020, 58 (09) : 2049 - 2061
  • [33] HUMAN SKIN SEGMENTATION USING FULLY CONVOLUTIONAL NEURAL NETWORKS
    Ma, Chang-Hsian
    Shih, Huang-chia
    2018 IEEE 7TH GLOBAL CONFERENCE ON CONSUMER ELECTRONICS (GCCE 2018), 2018, : 168 - 170
  • [34] Segmentation of Coring Images using Fully Convolutional Neural Networks
    Fazekas, Szilard Zsolt
    Obrochta, Stephen
    Sato, Tatsuhiko
    Yamamura, Akihiro
    2017 9TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ICITEE), 2017,
  • [35] OCT SEGMENTATION USING CONVOLUTIONAL NEURAL NETWORK
    George, Neetha
    Jiji, C., V
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING WORKSHOPS (IEEE ISBI WORKSHOPS 2020), 2020,
  • [36] Automatic Segmentation and Functional Assessment of the Left Ventricle using U-net Fully Convolutional Network
    Abdeltawab, Hisham
    Khalifa, Fahmi
    Taher, Fatma
    Beache, Garth
    Mohamed, Tamer
    Elmaghraby, Adel
    Ghazal, Mohammed
    Keynton, Robert
    El-Baz, Ayman
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS & TECHNIQUES (IST 2019), 2019,
  • [37] Settlement detection from satellite imagery using fully convolutional network
    Anjum, Tayaba
    Ali, Ahsan
    Naseem, Muhammad Tahir
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (04)
  • [38] A deep supervised approach for ischemic lesion segmentation from multimodal MRI using Fully Convolutional Network
    Karthik, R.
    Gupta, Utkarsh
    Jha, Ashish
    Rajalakshmi, R.
    Menaka, R.
    APPLIED SOFT COMPUTING, 2019, 84
  • [39] CCsNeT: Automated Corpus Callosum segmentation using fully convolutional network based on U-Net
    Chandra, Anjali
    Verma, Shrish
    Raghuvanshi, A. S.
    Bodhey, Narendra Kuber
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (01) : 187 - 203
  • [40] Multi-scale fully convolutional network for gland segmentation using three-class classification
    Ding, Huijun
    Pan, Zhanpeng
    Cen, Qian
    Li, Yang
    Chen, Shifeng
    NEUROCOMPUTING, 2020, 380 (380) : 150 - 161