A rapid vortex identification method using fully convolutional segmentation network

被引:0
|
作者
Yueqing Wang
Liang Deng
Zhigong Yang
Dan Zhao
Fang Wang
机构
[1] Computational Aerodynamics Institute at China Aerodynamics Research and Development Center,College of Computer
[2] National University of Defense Technology,undefined
来源
The Visual Computer | 2021年 / 37卷
关键词
Vortex identification; Convolutional neural network; Segmentation; Scientific visualization;
D O I
暂无
中图分类号
学科分类号
摘要
Vortex identification methods have been extensively studied in recent years due to their importance in understanding the potential physical mechanism of the flow field. Although demonstrating great success in various scenarios, these methods cannot achieve a compromise between computational speed and accuracy, which restricts their usage in large-scale applications. In specific, local methods provide results rapidly with pool accuracies. By contrast, global methods can obtain reliable results by consuming much more time. To take the advantages of both local and global methods, several methods based on convolutional neural networks are proposed. These methods use local patches around each point and the labels obtained by global methods to train the network. They convert the vortex identification tasks into binary classification problems. In this manner, these methods detect vortices rapidly and robustly. By revisiting these methods, we observe two drawbacks that limit their performance: (i) the large number of parameters and (ii) high computational complexity. To address these issues, we provide a rapid vortex identification method by using a fully convolutional segmentation network in this work. Specifically, we discard the fully connected layers to decrease the number of parameters and design a segmentation network to reduce computational complexity. Intensive experimental results show that the accuracy and recall performance of our method are comparable with those of the global methods. Moreover, the time consumption of our method is less than that of all other methods.
引用
收藏
页码:261 / 273
页数:12
相关论文
共 50 条
  • [21] Weakly Supervised Fully Convolutional Network for PET Lesion Segmentation
    Afshari, S.
    BenTaieb, A.
    Mirikharaji, Z.
    Hamarneh, G.
    MEDICAL IMAGING 2019: IMAGE PROCESSING, 2019, 10949
  • [22] A Fully Convolutional Network for Signature Segmentation from Document Images
    Santos Leite Melo, Victor Kleber
    Dantas Bezerra, Byron Leite
    PROCEEDINGS 2018 16TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR), 2018, : 540 - 545
  • [23] Fully automated pelvic bone segmentation in multiparameteric MRI using a 3D convolutional neural network
    Xiang Liu
    Chao Han
    He Wang
    Jingyun Wu
    Yingpu Cui
    Xiaodong Zhang
    Xiaoying Wang
    Insights into Imaging, 12
  • [24] Image Segmentation of Liver CT Based on Fully Convolutional Network
    Jin, Xinyu
    Ye, Huimin
    Li, Lanjuan
    Xia, Qi
    2017 10TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL. 1, 2017, : 210 - 213
  • [25] Residual neural network-based fully convolutional network for microstructure segmentation
    Jang, Junmyoung
    Van, Donghyun
    Jang, Hyojin
    Baik, Dae Hyun
    Yoo, Sang Duk
    Park, Jaewoong
    Mhin, Sungwook
    Mazumder, Jyoti
    Lee, Seung Hwan
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2020, 25 (04) : 282 - 289
  • [26] Fully Automatic Left Atrium Segmentation From Late Gadolinium Enhanced Magnetic Resonance Imaging Using a Dual Fully Convolutional Neural Network
    Xiong, Zhaohan
    Fedorov, Vadim V.
    Fu, Xiaohang
    Cheng, Elizabeth
    Macleod, Rob
    Zhao, Jichao
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) : 515 - 524
  • [27] Outdoor Scenes Pixel-wise Semantic Segmentation using Polarimetry and Fully Convolutional Network
    Blanchon, Marc
    Morel, Olivier
    Zhang, Yifei
    Seulin, Ralph
    Crombez, Nathan
    Sidibe, Desire
    PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2019, : 328 - 335
  • [28] Wetland classification method using fully convolutional neural network and Stacking algorithm
    Zhang M.
    Lin H.
    Long X.
    Lin, Hui (linhui@csuft.edu.cn), 1600, Chinese Society of Agricultural Engineering (36): : 257 - 264
  • [29] Deep Learning Model for Skin Lesion Segmentation: Fully Convolutional Network
    Adegun, Adekanmi
    Viriri, Serestina
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2019), PT II, 2019, 11663 : 232 - 242
  • [30] Automatic segmentation of the uterus on MRI using a convolutional neural network
    Kurata, Yasuhisa
    Nishio, Mizuho
    Kido, Aki
    Fujimoto, Koji
    Yakami, Masahiro
    Isoda, Hiroyoshi
    Togashi, Kaori
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 114