Coherence resonance and stochastic synchronization in a nonlinear circuit near a subcritical Hopf bifurcation
被引:0
作者:
Anna Zakharova
论文数: 0引用数: 0
h-index: 0
机构:Institut für Theoretische Physik,
Anna Zakharova
Alexey Feoktistov
论文数: 0引用数: 0
h-index: 0
机构:Institut für Theoretische Physik,
Alexey Feoktistov
Tatyana Vadivasova
论文数: 0引用数: 0
h-index: 0
机构:Institut für Theoretische Physik,
Tatyana Vadivasova
Eckehard Schöll
论文数: 0引用数: 0
h-index: 0
机构:Institut für Theoretische Physik,
Eckehard Schöll
机构:
[1] Institut für Theoretische Physik,
[2] Technische Universität Berlin,undefined
[3] Saratov State University,undefined
来源:
The European Physical Journal Special Topics
|
2013年
/
222卷
关键词:
Hopf Bifurcation;
European Physical Journal Special Topic;
Noise Intensity;
Deterministic System;
Unstable Limit Cycle;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We analyze noise-induced phenomena in nonlinear dynamical systems near a subcritical Hopf bifurcation. We investigate qualitative changes of probability distributions (stochastic bifurcations), coherence resonance, and stochastic synchronization. These effects are studied in dynamical systems for which a subcritical Hopf bifurcation occurs. We perform analytical calculations, numerical simulations and experiments on an electronic circuit. For the generalized Van der Pol model we uncover the similarities between the behavior of a self-sustained oscillator characterized by a subcritical Hopf bifurcation and an excitable system. The analogy is manifested through coherence resonance and stochastic synchronization. In particular, we show both experimentally and numerically that stochastic oscillations that appear due to noise in a system with hard excitation, can be partially synchronized even outside the oscillatory regime of the deterministic system.