Trigonometric widths of the classes Lβ,pψ of functions of many variables

被引:0
作者
Konsevych N.M. [1 ]
机构
[1] Institute of Mathematics, Ukrainian Academy of Sciences, Kiev
关键词
Periodic Function; Order Estimate; Trigonometric Width; Obtain Order Estimate;
D O I
10.1023/A:1014331111819
中图分类号
学科分类号
摘要
We obtain order estimates for the trigonometric widths of the classes Lβ,pψ of periodic functions of many variables in the space Lq for 1 <p≤2≤q<p/(p- 1). © 2001 Plenum Publishing Corporation.
引用
收藏
页码:1561 / 1567
页数:6
相关论文
共 9 条
[1]  
Ismagilov R.S., Widths of sets in linear normed spaces and approximation of functions by trigonometric polynomials, Usp. Mat. Nauk, 29, 3, pp. 161-178, (1974)
[2]  
Stepanets A.I., Classification and Approximation of Periodic Functions [in Russian], (1987)
[3]  
Romanyuk A.S., Approximation of periodic functions of many variables in the metric of L<sub>q</sub>, Approximation of PeriodicFunctions in the Metric of the Space Lp [in Russian], pp. 42-58, (1987)
[4]  
Belinskii E.S., Galeev E.M., On the least value of norms of mixed derivatives of trigonometric polynomials with given number of harmonics, Vestn. Mask. Univ., Ser. Mat. Mekh., 2, pp. 3-7, (1991)
[5]  
Temlyakov V.N., Approximation of functions with bounded mixed derivative, Tr. Mat. Inst. Akad. Nauk SSSR, 178, pp. 3-112, (1986)
[6]  
Romanyuk A.S., Trigonometric widths of the classes B<sub>p,⊖</sub><sup>r</sup> of functions of many variables in the space L<sub>q</sub>, Ukr. Mat. Zh., 50, 8, pp. 1089-1097, (1998)
[7]  
Nikol'skii S.M., Approximation of Functions of Many Variables and Imbedding Theorems [in Russian], (1977)
[8]  
Romanyuk A.S., Estimates for the best approximations and widths of classes L<sub>β,p</sub><sup>ψ</sup> of periodic functions of many variables, [in Russian], pp. 29-59, (1988)
[9]  
Belinskii E.S., Approximation of periodic functions of many variables by a "floating" system of exponents and trigonometric widths, Dokl. Akad. NaukSSSR, 284, 6, pp. 1294-1297, (1985)