Completely bounded maps and invariant subspaces

被引:0
作者
M. Alaghmandan
I. G. Todorov
L. Turowska
机构
[1] Carleton University,School of Mathematics and Statistics
[2] Queen’s University Belfast,Mathematical Sciences Research Centre
[3] Nankai University,School of Mathematical Sciences
[4] Chalmers University of Technology and The University of Gothenburg,Department of Mathematical Sciences
来源
Mathematische Zeitschrift | 2020年 / 294卷
关键词
Primary: 46L89; Secondary: 22D15; 47L25;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a description of certain invariance properties of completely bounded bimodule maps in terms of their symbols. If G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {G}$$\end{document} is a locally compact quantum group, we characterise the completely bounded L∞(G)′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }(\mathbb {G})'$$\end{document}-bimodule maps that send C0(G^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0({\hat{\mathbb {G}}})$$\end{document} into L∞(G^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }({\hat{\mathbb {G}}})$$\end{document} in terms of the properties of the corresponding elements of the normal Haagerup tensor product L∞(G)⊗σhL∞(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }(\mathbb {G}) \otimes _{\sigma \mathop {\mathrm{h}}} L^{\infty }(\mathbb {G})$$\end{document}. As a consequence, we obtain an intrinsic characterisation of the normal completely bounded L∞(G)′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }(\mathbb {G})'$$\end{document}-bimodule maps that leave L∞(G^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }({\hat{\mathbb {G}}})$$\end{document} invariant, extending and unifying results, formulated in the current literature separately for the commutative and the co-commutative cases.
引用
收藏
页码:471 / 489
页数:18
相关论文
共 33 条
  • [1] Alaghmandan M(2017)Completely bounded bimodule maps and spectral synthesis Int. J. Math. 28 1750067-532
  • [2] Todorov IG(1974)Operator algebras and invariant subspaces Ann. Math. 100 433-144
  • [3] Turowska L(1992)The dual of the Haagerup tensor product J. Lond. Math. Soc. 45 126-302
  • [4] Arveson WB(1984)Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group Boll. Un. Mat. Ital. A 2 297-500
  • [5] Blecher D(1985)Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups Am. J. Math. 107 455-276
  • [6] Smith RR(2010)Multipliers, self-induced and dual Banach algebras Diss. Math. 470 62-156
  • [7] Bożejko M(1987)Module maps and Hochschild–Johnson cohomology Indiana Univ. Math. J. 36 257-236
  • [8] Fendler G(2003)Operator space tensor products and Hopf convolution algebras J. Oper. Theory 50 131-699
  • [9] de Canniere J(1964)L’algèbre de Fourier d’un groupe localement compact Bull. Soc. Math. France 92 181-39
  • [10] Haagerup U(1994)Approximation properties for group C*-algebras and group von Neumann algebras Trans. Am. Math. Soc. 344 667-400