A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and Its Algorithmic Applications

被引:0
作者
Robert Crowston
Gregory Gutin
Mark Jones
Anders Yeo
机构
[1] Royal Holloway,Department of Computer Science
[2] University of London,undefined
来源
Algorithmica | 2012年 / 64卷
关键词
MaxSat; Lower bound; 2-Satisfiable; Fixed parameter tractable; Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
A pair of unit clauses is called conflicting if it is of the form (x), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\bar{x})$\end{document}. A CNF formula is unit-conflict free (UCF) if it contains no pair of conflicting unit clauses. Lieberherr and Specker (J. ACM 28:411–421, 1981) showed that for each UCF CNF formula with m clauses we can simultaneously satisfy at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{ \varphi } m$\end{document} clauses, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{ \varphi }=(\sqrt{5}-1)/2$\end{document}. We improve the Lieberherr-Specker bound by showing that for each UCF CNF formula F with m clauses we can find, in polynomial time, a subformula F′ with m′ clauses such that we can simultaneously satisfy at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{ \varphi } m+(1-\hat{ \varphi })m'+(2-3\hat {\varphi })n''/2$\end{document} clauses (in F), where n″ is the number of variables in F which are not in F′.
引用
收藏
页码:56 / 68
页数:12
相关论文
共 18 条
  • [1] Aharoni R.(1986)Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas J. Comb. Theory, Ser. A 43 196-204
  • [2] Linial N.(2002)Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference Theor. Comput. Sci. 289 503-516
  • [3] Fleischner H.(1985)Implications of forbidden structures for extremal algorithmic problems Theor. Comput. Sci. 40 195-210
  • [4] Kullmann O.(2007)Partial satisfaction of Electron. Notes Discrete Math. 29 497-501
  • [5] Szeider S.(1981)-satisfiable formulas J. ACM 28 411-421
  • [6] Huang M.A.(1999)Complexity of partial satisfaction J. Algorithms 31 335-354
  • [7] Lieberherr K.J.(1985)Parameterizing above guaranteed values: MaxSat and MaxCut Discrete Appl. Math. 10 287-295
  • [8] Käppeli C.(2004)Solving satisfiability in less than 2 J. Comput. Syst. Sci. 69 656-674
  • [9] Scheder D.(2004) steps SIAM J. Discrete Math. 17 541-547
  • [10] Lieberherr K.J.(1994)Minimal unsatisfiable formulas with bounded clause-variable difference are fixed-parameter tractable J. Algorithms 17 475-502