Finite Cycle Gibbs Measures on Permutations of Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb Z}^d}$$\end{document}

被引:0
作者
Inés Armendáriz
Pablo A. Ferrari
Pablo Groisman
Florencia Leonardi
机构
[1] Universidad de Buenos Aires,Departamento de Matemática
[2] Universidad de Buenos Aires and IMAS-CONICET,Departamento de Matemática
[3] Universidade de São Paulo,Instituto de Matemática e Estatística
关键词
Gibbs measures; Permutations; Hamiltonian; Specifications; Cycles; Ergodicity; Invariant measure;
D O I
10.1007/s10955-014-1169-6
中图分类号
学科分类号
摘要
We consider Gibbs distributions on the set of permutations of Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Z}^d$$\end{document} associated to the Hamiltonian H(σ):=∑xV(σ(x)-x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(\sigma ):=\sum _{x} {V}(\sigma (x)-x)$$\end{document}, where σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is a permutation and V:Zd→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V}:{\mathbb Z}^d\rightarrow {\mathbb R}$$\end{document} is a strictly convex potential. Call finite-cycle those permutations composed by finite cycles only. We give conditions on V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V}$$\end{document} ensuring that for large enough temperature α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document} there exists a unique infinite volume ergodic Gibbs measure μα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ^\alpha $$\end{document} concentrating mass on finite-cycle permutations; this measure is equal to the thermodynamic limit of the specifications with identity boundary conditions. We construct μα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ^{\alpha }$$\end{document} as the unique invariant measure of a Markov process on the set of finite-cycle permutations that can be seen as a loss-network, a continuous-time birth and death process of cycles interacting by exclusion, an approach proposed by Fernández, Ferrari and Garcia. Define τv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _v$$\end{document} as the shift permutation τv(x)=x+v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _v(x)=x+v$$\end{document}. In the Gaussian case V=‖·‖2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V}=\Vert \cdot \Vert ^2$$\end{document}, we show that for each v∈Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in {\mathbb Z}^d$$\end{document}, μvα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ^\alpha _v$$\end{document} given by μvα(f)=μα[f(τv·)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ^\alpha _v(f)=\mu ^\alpha [f(\tau _v\cdot )]$$\end{document} is an ergodic Gibbs measure equal to the thermodynamic limit of the specifications with τv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _v$$\end{document} boundary conditions. For a general potential V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V}$$\end{document}, we prove the existence of Gibbs measures μvα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ^\alpha _v$$\end{document} when α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is bigger than some v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document}-dependent value.
引用
收藏
页码:1213 / 1233
页数:20
相关论文
共 11 条
[1]  
Betz V(2009)Spatial random permutations and infinite cycles Commun. Math. Phys. 285 469-501
[2]  
Ueltschi D(2001)Loss network representation of Peierls contours Ann. Probab. 29 902-937
[3]  
Fernández R(1953)Atomic theory of the Phys. Rev. 91 1291-1301
[4]  
Ferrari PA(1991) transition in helium Prob. Th.eory Relat Fields 89 35-60
[5]  
Garcia NL(2007)Random permutations of countable sets J. Stat. Phys. 129 663-676
[6]  
Feynman RP(1991)On a model of random cycles Ann. Appl. Probab. 1 319-378
[7]  
Fichtner KH(undefined)Loss networks undefined undefined undefined-undefined
[8]  
Gandolfo D(undefined)undefined undefined undefined undefined-undefined
[9]  
Ruiz J(undefined)undefined undefined undefined undefined-undefined
[10]  
Ueltschi D(undefined)undefined undefined undefined undefined-undefined