Analysis of a delayed predator-prey model with ratio-dependent functional response and quadratic harvesting

被引:25
作者
Feng P. [1 ]
机构
[1] Department of Mathematics, Florida Gulf Coast University, Fort Myers
关键词
Hopf bifurcation; Permanence; Ratio dependent; Time delay;
D O I
10.1007/s12190-013-0691-z
中图分类号
学科分类号
摘要
In this paper, we investigate the dynamics of a ratio dependent predator-prey model with quadratic harvesting. We examine the existence of the positive equilibria, the related dynamical behaviors of the model, as well as the boundedness and permanence property of the system. We also study the global stability of the interior equilibrium without time delay. Finally some bifurcation analysis is carried out for the system with delay and the results are illustrated numerically. © 2013 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:251 / 262
页数:11
相关论文
共 10 条
[1]  
Abrams P., The fallacies of ratio-dependent predation, Ecology, 75, 6, pp. 1842-1850, (1994)
[2]  
Arditi R., Ginzburg L.R., Coupling in predator-prey dynamics: Ratio dependence, J. Theor. Biol., 139, pp. 311-326, (1989)
[3]  
Baek S., Ko W., Ahn I., Coexistence of a one-prey two-predators model with ratio-dependent functional responses, Appl. Comput. Math., 219, pp. 1897-1908, (2012)
[4]  
Hsu S.B., Huang T.W., Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55, pp. 763-783, (1995)
[5]  
Kuang Y., Beretta E., Global analysis of Gause-type ratio-dependent predator-prey systems, J. Math. Biol., 36, pp. 389-406, (1998)
[6]  
Liu Z., Zhong S., Yin C., Chen W., On the dynamics of an impulsive reaction-diffusion predator-prey system with ratio-dependent functional response, Acta Appl. Math., 115, pp. 329-349, (2011)
[7]  
Nindjin A.F., Aziz-Alaoui M.A., Cadivel M., Analysis of a predator-prey models with modified Leslie-Gower and Holling-type II schemes with time delay, Nonlinear Anal., Real World Appl., 7, pp. 1104-1118, (2006)
[8]  
Saleh K., A ratio-dependent predator-prey system with quadratic predator harvesting, Asian Trans. Basic Appl. Sci., 2, 4, pp. 21-25, (2013)
[9]  
Xiao D., Jennings L., Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM J. Appl. Math., 65, pp. 737-753, (2005)
[10]  
Xiao D., Li W., Han M., Dynamics in a ratio-dependent predator-prey model with predator harvesting, J. Math. Anal. Appl., 3241, pp. 14-29, (2006)