Lexicographic effect algebras

被引:0
作者
Anatolij Dvurečenskij
机构
[1] Slovak Academy of Sciences,Mathematical Institute
[2] Palacký University,Depart. Algebra Geom.
来源
Algebra universalis | 2016年 / 75卷
关键词
effect algebra; the Riesz Decomposition Property; po-group; strong unit; lexicographic product; ideal; retractive ideal; (; , ; )-perfect effect algebra; lexicographic effect algebra; strongly (; , ; )-perfect effect algebra; Primary: 03G12; Secondary: 06D35;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate a class of effect algebras that can be represented in the form Γ(H×→G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma (H \overrightarrow{\times} G}$$\end{document}, (u, 0)), where H×→G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H \overrightarrow{\times} G}$$\end{document} means the lexicographic product of an Abelian unital po-group (H, u) and an Abelian directed po-group G. We study conditions when an effect algebra is of this form. Fixing a unital po-group (H, u), the category of strongly (H, u)-perfect effect algebras is introduced and it is shown that it is categorically equivalent to the category of directed po-groups with interpolation. We prove some representation theorems of lexicographic effect algebras, including a subdirect product representation by antilattice lexicographic effect algebras.
引用
收藏
页码:451 / 480
页数:29
相关论文
共 50 条
[41]   Orthocomplete effect algebras [J].
Jenca, G ;
Pulmannová, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (09) :2663-2671
[42]   MEASURES ON EFFECT ALGEBRAS [J].
Barbieri, Giuseppina ;
Garcia-Pacheco, Francisco J. ;
Moreno-Pulido, Soledad .
MATHEMATICA SLOVACA, 2019, 69 (01) :159-170
[43]   Effect algebras with compressions [J].
Pulmannova, Sylvia .
REPORTS ON MATHEMATICAL PHYSICS, 2006, 58 (02) :301-324
[44]   Dynamic effect algebras [J].
Chajda, Ivan ;
Kolarik, Miroslav .
MATHEMATICA SLOVACA, 2012, 62 (03) :379-388
[45]   Ideals of effect algebras [J].
Qu, Wenbo ;
Fei, Weijin .
PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2007, 6 :612-613
[46]   ON TOPOLOGICAL EFFECT ALGEBRAS [J].
Rakhshani, M. R. ;
Borzooei, R. A. ;
Rezaei, G. R. .
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (39) :312-325
[47]   Hyper effect algebras [J].
Dvurecenskij, Anatolij ;
Hycko, Marek .
FUZZY SETS AND SYSTEMS, 2017, 326 :34-51
[48]   KITE n-PERFECT PSEUDO EFFECT ALGEBRAS [J].
Botur, Michal ;
Dvurecenskij, Anatolij .
REPORTS ON MATHEMATICAL PHYSICS, 2015, 76 (03) :291-315
[49]   Congruences and ideals in pseudo effect algebras as total algebras [J].
Silvia Pulmannová ;
Elena Vinceková .
Soft Computing, 2010, 14 :1209-1215
[50]   Congruences and ideals in pseudo effect algebras as total algebras [J].
Pulmannova, Silvia ;
Vincekova, Elena .
SOFT COMPUTING, 2010, 14 (11) :1209-1215