Lexicographic effect algebras

被引:0
作者
Anatolij Dvurečenskij
机构
[1] Slovak Academy of Sciences,Mathematical Institute
[2] Palacký University,Depart. Algebra Geom.
来源
Algebra universalis | 2016年 / 75卷
关键词
effect algebra; the Riesz Decomposition Property; po-group; strong unit; lexicographic product; ideal; retractive ideal; (; , ; )-perfect effect algebra; lexicographic effect algebra; strongly (; , ; )-perfect effect algebra; Primary: 03G12; Secondary: 06D35;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate a class of effect algebras that can be represented in the form Γ(H×→G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma (H \overrightarrow{\times} G}$$\end{document}, (u, 0)), where H×→G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H \overrightarrow{\times} G}$$\end{document} means the lexicographic product of an Abelian unital po-group (H, u) and an Abelian directed po-group G. We study conditions when an effect algebra is of this form. Fixing a unital po-group (H, u), the category of strongly (H, u)-perfect effect algebras is introduced and it is shown that it is categorically equivalent to the category of directed po-groups with interpolation. We prove some representation theorems of lexicographic effect algebras, including a subdirect product representation by antilattice lexicographic effect algebras.
引用
收藏
页码:451 / 480
页数:29
相关论文
共 50 条
[31]   Embeddings of generalized effect algebras into complete effect algebras [J].
Riecanová, Z .
SOFT COMPUTING, 2006, 10 (06) :476-482
[32]   Perfect effect algebras are categorically equivalent with abelian interpolation po-groups [J].
Dvurecenskij, Anatolij .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 82 :183-207
[33]   BL-algebras and effect algebras [J].
Vetterlein, T .
SOFT COMPUTING, 2005, 9 (08) :557-564
[34]   BL-algebras and effect algebras [J].
T. Vetterlein .
Soft Computing, 2005, 9 :557-564
[35]   Some Remarks on Kite Pseudo Effect Algebras [J].
Anatolij Dvurečenskij ;
W. Charles Holland .
International Journal of Theoretical Physics, 2014, 53 :1685-1696
[36]   Semi-ideal Convex Effect Algebras [J].
Chen, Yanan ;
Wei, Xiaowei .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (05)
[37]   Some Remarks on Kite Pseudo Effect Algebras [J].
Dvurecenskij, Anatolij ;
Holland, W. Charles .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (05) :1685-1696
[38]   Effect Algebras as Presheaves on Finite Boolean Algebras [J].
Jenca, Gejza .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2018, 35 (03) :525-540
[39]   Effect Algebras as Presheaves on Finite Boolean Algebras [J].
Gejza Jenča .
Order, 2018, 35 :525-540
[40]   INTERVALS IN GENERALIZED EFFECT ALGEBRAS AND THEIR SUB-GENERALIZED EFFECT ALGEBRAS [J].
Riecanova, Zdenka ;
Zajac, Michal .
ACTA POLYTECHNICA, 2013, 53 (03) :314-316