Lexicographic effect algebras

被引:0
作者
Anatolij Dvurečenskij
机构
[1] Slovak Academy of Sciences,Mathematical Institute
[2] Palacký University,Depart. Algebra Geom.
来源
Algebra universalis | 2016年 / 75卷
关键词
effect algebra; the Riesz Decomposition Property; po-group; strong unit; lexicographic product; ideal; retractive ideal; (; , ; )-perfect effect algebra; lexicographic effect algebra; strongly (; , ; )-perfect effect algebra; Primary: 03G12; Secondary: 06D35;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate a class of effect algebras that can be represented in the form Γ(H×→G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma (H \overrightarrow{\times} G}$$\end{document}, (u, 0)), where H×→G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H \overrightarrow{\times} G}$$\end{document} means the lexicographic product of an Abelian unital po-group (H, u) and an Abelian directed po-group G. We study conditions when an effect algebra is of this form. Fixing a unital po-group (H, u), the category of strongly (H, u)-perfect effect algebras is introduced and it is shown that it is categorically equivalent to the category of directed po-groups with interpolation. We prove some representation theorems of lexicographic effect algebras, including a subdirect product representation by antilattice lexicographic effect algebras.
引用
收藏
页码:451 / 480
页数:29
相关论文
共 50 条
[21]   Perfect Effect Algebras and Spectral Resolutions of Observables [J].
Anatolij Dvurečenskij .
Foundations of Physics, 2019, 49 :607-628
[22]   Perfect Effect Algebras and Spectral Resolutions of Observables [J].
Dvurecenskij, Anatolij .
FOUNDATIONS OF PHYSICS, 2019, 49 (06) :607-628
[23]   n-Perfect and -Perfect Pseudo Effect Algebras [J].
Dvurecenskij, Anatolij ;
Xie, Yongjian .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (10) :3380-3390
[24]   CONGRUENCES AND IDEALS IN LATTICE EFFECT ALGEBRAS AS BASIC ALGEBRAS [J].
Pulmannova, Sylvia ;
Vincekova, Elena .
KYBERNETIKA, 2009, 45 (06) :1030-1039
[25]   Ideals and congruences in effect algebras and QMV-algebras [J].
Giuntini, R ;
Pulmannová, S .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (03) :1567-1592
[26]   Congruences and ideals of effect algebras [J].
Avallone, A ;
Vitolo, P .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2003, 20 (01) :67-77
[27]   Congruences and Ideals of Effect Algebras [J].
Anna Avallone ;
Paolo Vitolo .
Order, 2003, 20 :67-77
[28]   Note on ideals of effect algebras [J].
Ma, ZhiHao .
INFORMATION SCIENCES, 2009, 179 (05) :505-507
[29]   Embeddings of generalized effect algebras into complete effect algebras [J].
Z. Riečanová .
Soft Computing, 2006, 10 :476-482
[30]   Intervals of effect algebras and pseudo-effect algebras [J].
Chajda, Ivan ;
Kuehr, Jan .
MATHEMATICA SLOVACA, 2010, 60 (05) :615-630