Lexicographic effect algebras

被引:0
作者
Anatolij Dvurečenskij
机构
[1] Slovak Academy of Sciences,Mathematical Institute
[2] Palacký University,Depart. Algebra Geom.
来源
Algebra universalis | 2016年 / 75卷
关键词
effect algebra; the Riesz Decomposition Property; po-group; strong unit; lexicographic product; ideal; retractive ideal; (; , ; )-perfect effect algebra; lexicographic effect algebra; strongly (; , ; )-perfect effect algebra; Primary: 03G12; Secondary: 06D35;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate a class of effect algebras that can be represented in the form Γ(H×→G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma (H \overrightarrow{\times} G}$$\end{document}, (u, 0)), where H×→G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H \overrightarrow{\times} G}$$\end{document} means the lexicographic product of an Abelian unital po-group (H, u) and an Abelian directed po-group G. We study conditions when an effect algebra is of this form. Fixing a unital po-group (H, u), the category of strongly (H, u)-perfect effect algebras is introduced and it is shown that it is categorically equivalent to the category of directed po-groups with interpolation. We prove some representation theorems of lexicographic effect algebras, including a subdirect product representation by antilattice lexicographic effect algebras.
引用
收藏
页码:451 / 480
页数:29
相关论文
共 50 条
[11]   Lexicographic MV-algebras and lexicographic states [J].
Diaconescu, Denisa ;
Flaminio, Tommaso ;
Leustean, Ioana .
FUZZY SETS AND SYSTEMS, 2014, 244 :63-85
[12]   Product Effect Algebras [J].
Anatolij Dvurečenskij .
International Journal of Theoretical Physics, 2002, 41 :1827-1839
[13]   Product effect algebras [J].
Dvurecenskij, A .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (10) :1827-1839
[14]   Representation of perfect and n-perfect pseudo effect algebras [J].
Dvurecenskij, Anatolij .
FUZZY SETS AND SYSTEMS, 2023, 455 :19-34
[15]   Kite Pseudo Effect Algebras [J].
Anatolij Dvurečenskij .
Foundations of Physics, 2013, 43 :1314-1338
[16]   Kite Pseudo Effect Algebras [J].
Dvurecenskij, Anatolij .
FOUNDATIONS OF PHYSICS, 2013, 43 (11) :1314-1338
[17]   Riesz decomposition properties and the lexicographic product of po-groups [J].
Dvurecenskij, Anatolij .
SOFT COMPUTING, 2016, 20 (06) :2103-2117
[18]   Riesz decomposition properties and the lexicographic product of po-groups [J].
Anatolij Dvurečenskij .
Soft Computing, 2016, 20 :2103-2117
[19]   On a new construction of pseudo effect algebras [J].
Anatolij Dvurečenskij .
Soft Computing, 2015, 19 :517-529
[20]   On a new construction of pseudo effect algebras [J].
Dvurecenskij, Anatolij .
SOFT COMPUTING, 2015, 19 (03) :517-529