Lexicographic effect algebras

被引:0
|
作者
Anatolij Dvurečenskij
机构
[1] Slovak Academy of Sciences,Mathematical Institute
[2] Palacký University,Depart. Algebra Geom.
来源
Algebra universalis | 2016年 / 75卷
关键词
effect algebra; the Riesz Decomposition Property; po-group; strong unit; lexicographic product; ideal; retractive ideal; (; , ; )-perfect effect algebra; lexicographic effect algebra; strongly (; , ; )-perfect effect algebra; Primary: 03G12; Secondary: 06D35;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate a class of effect algebras that can be represented in the form Γ(H×→G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma (H \overrightarrow{\times} G}$$\end{document}, (u, 0)), where H×→G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H \overrightarrow{\times} G}$$\end{document} means the lexicographic product of an Abelian unital po-group (H, u) and an Abelian directed po-group G. We study conditions when an effect algebra is of this form. Fixing a unital po-group (H, u), the category of strongly (H, u)-perfect effect algebras is introduced and it is shown that it is categorically equivalent to the category of directed po-groups with interpolation. We prove some representation theorems of lexicographic effect algebras, including a subdirect product representation by antilattice lexicographic effect algebras.
引用
收藏
页码:451 / 480
页数:29
相关论文
共 50 条
  • [1] Lexicographic effect algebras
    Dvurecenskij, Anatolij
    ALGEBRA UNIVERSALIS, 2016, 75 (04) : 451 - 480
  • [2] Lexicographic pseudo effect algebras
    Anatolij Dvurečenskij
    Soft Computing, 2017, 21 : 4981 - 4994
  • [3] Lexicographic pseudo effect algebras
    Dvurecenskij, Anatolij
    SOFT COMPUTING, 2017, 21 (17) : 4981 - 4994
  • [4] Pseudo MV-algebras and lexicographic product
    Dvurecenskij, Anatolij
    FUZZY SETS AND SYSTEMS, 2016, 303 : 56 - 79
  • [5] Observables on lexicographic effect algebras
    Anatolij Dvurečenskij
    Dominik Lachman
    Algebra universalis, 2019, 80
  • [6] Observables on lexicographic effect algebras
    Dvurecenskij, Anatolij
    Lachman, Dominik
    ALGEBRA UNIVERSALIS, 2019, 80 (04)
  • [7] Lexicographic pseudo MV-algebras
    Dvurecenskij, Anatolij
    JOURNAL OF APPLIED LOGIC, 2015, 13 (04) : 825 - 841
  • [8] Lexicographic product vs -perfect and -perfect pseudo effect algebras
    Dvurecenskij, Anatolij
    Kolarik, Miroslav
    SOFT COMPUTING, 2014, 18 (06) : 1041 - 1053
  • [9] The Lexicographic Product of Po-groups and n-Perfect Pseudo Effect Algebras
    Dvurecenskij, Anatolij
    Krnavek, Jan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (08) : 2760 - 2772
  • [10] The Lexicographic Product of Po-groups and n-Perfect Pseudo Effect Algebras
    Anatolij Dvurečenskij
    Jan Krňávek
    International Journal of Theoretical Physics, 2013, 52 : 2760 - 2772