The qT and ∆ϕ spectra in W and Z production at the LHC at N3LL′+N2LO

被引:0
作者
Wan-Li Ju
Marek Schönherr
机构
[1] Durham University,Institute for Particle Physics Phenomenology
来源
Journal of High Energy Physics | / 2021卷
关键词
QCD Phenomenology;
D O I
暂无
中图分类号
学科分类号
摘要
The production of weak gauge bosons, W± and Z, are at the core of the LHC precision measurement program. Their transverse momentum spectra as well as their pairwise ratios are key theoretical inputs to many high-precision analyses, ranging from the W mass measurement to the determination of parton distribution functions. Owing to the different properties of the W and Z boson and the different accessible fiducial regions for their measurement, a simple one-dimensional correlation is insufficient to capture the differing vector and axial-vector dynamics of the produced lepton pair. We propose to correlate them in two observables, the transverse momentum qT of the lepton pair and its azimuthal separation ∆ϕ. Both quantities are purely transverse and therefore accessible in all three processes, either directly or by utilising the missing transverse momentum of the event. We calculate all the single-differential qT and ∆ϕ as well as the double-differential (qT, ∆ϕ) spectra for all three processes at N3LL′+N2LO accuracy, resumming small transverse momentum logarithms in the soft-collinear effective theory approach and including all singlet and non-singlet contributions. Using the double-differential cross sections we build the pairwise ratios ℛW+/Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathcal{R}}}_{W^{+}/Z} $$\end{document}, ℛW−/Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathcal{R}}}_{W^{-}/Z} $$\end{document}, and ℛW+/W−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathcal{R}}}_{W^{+}/{W}^{-}} $$\end{document} and determine their uncertainties assuming fully correlated, partially correlated, and uncorrelated uncertainties in the respective numerators and denominators. In the preferred partially correlated case we find uncertainties of less than 1% in most phase space regions and up to 3% in the lowest qT region.
引用
收藏
相关论文
共 374 条
  • [41] Liu X(1982)undefined Nucl. Phys. B 197 110-undefined
  • [42] Petriello F(1982)undefined Phys. Lett. B 112 242001-undefined
  • [43] Boughezal R(1983)undefined Phys. Lett. B 123 108-undefined
  • [44] Focke C(1988)undefined Phys. Lett. B 211 868-undefined
  • [45] Liu X(1984)undefined Nucl. Phys. B 244 132-undefined
  • [46] Petriello F(1985)undefined Nucl. Phys. B 250 1665-undefined
  • [47] Boughezal R(2008)undefined Nucl. Phys. B 791 002-undefined
  • [48] Liu X(2017)undefined JHEP 02 41-undefined
  • [49] Petriello F(2016)undefined Phys. Rev. Lett. 116 151601-undefined
  • [50] Gehrmann-De Ridder A(2018)undefined JHEP 02 084-undefined