Skew cyclic codes over Z4+uZ4+vZ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{4}+u\mathbb {Z}_{4}+v\mathbb {Z}_{4}$$\end{document}

被引:0
作者
Basri Çalışkan
Nuh Aydin
Peihan Liu
机构
[1] Osmaniye Korkut Ata University,Department of Mathematics
[2] Faculty of Arts and Science,Department of Mathematics and Statistics
[3] Kenyon College,School of Engineering and Applied Sciences
[4] Harvard University,undefined
关键词
Linear codes; Cyclic codes; Skew cyclic codes; Double-cyclic codes; 94B05; 94B15; 94B60;
D O I
10.1007/s12095-023-00645-3
中图分类号
学科分类号
摘要
In this paper, we study the skew-cyclic codes (also called θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\theta }$$\end{document}-cyclic codes) over the ring S=Z4+uZ4+vZ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}=\varvec{\mathbb {Z}}_{{\textbf {4}}}+\varvec{u}\mathbb {Z}_{{\textbf {4}}}+v\mathbb {Z}_{{\textbf {4}}}$$\end{document}, where u2=v2=uv=vu=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{u}^2=v^{{\textbf {2}}}=\varvec{u}\varvec{v}=\varvec{v}\varvec{u}={\textbf {0}}$$\end{document}. Some structural properties of the skew polynomial ring S[x,θ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}[\varvec{x},\varvec{\theta }]$$\end{document}, where θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\theta }$$\end{document} is an automorphism of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}$$\end{document} are discussed and the elements of Sθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}^{\varvec{\theta }}$$\end{document}, the subring of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}$$\end{document} fixed by θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\theta }$$\end{document}, are determined. Skew cyclic codes over S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}$$\end{document} are viewed as left S[x,θ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}[\varvec{x},\varvec{\theta }]$$\end{document}-submodules. Generator and parity-check matrices of a free θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\theta }$$\end{document}-cyclic code of even length over S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}$$\end{document} are determined and a Gray map on S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}$$\end{document} is used to obtain the Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{{\textbf {4}}}$$\end{document}-images. We show that the Gray image of a free skew cyclic code over S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}$$\end{document} is a free linear code over Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{{\textbf {4}}}$$\end{document}. Furthermore, these codes are generalized to double skew-cyclic codes. We obtained new linear codes over Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{{\textbf {4}}}$$\end{document} from Gray images of double skew-cyclic codes over S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}$$\end{document}.
引用
收藏
页码:845 / 858
页数:13
相关论文
共 50 条
[22]   F2F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_2\mathbb {F}_4$$\end{document}-skew cyclic codesF2F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_2\mathbb {F}_4$$\end{document}-Skew cyclic...R. M. Hesari et al. [J].
Roghayeh Mohammadi Hesari ;
Mustafa Sari ;
Ismail Aydogdu .
Computational and Applied Mathematics, 2025, 44 (5)
[23]   Cyclic codes over M4(F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_4({\mathbb {F}}_2$$\end{document}) [J].
Joydeb Pal ;
Sanjit Bhowmick ;
Satya Bagchi .
Journal of Applied Mathematics and Computing, 2019, 60 :749-756
[24]   Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length 4ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4p^s$$\end{document} over Fpm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{p^m}$$\end{document} [J].
Hai Q. Dinh ;
Ha T Le ;
Bac T. Nguyen ;
Roengchai Tansuchat .
Quantum Information Processing, 2021, 20 (11)
[25]   On cyclic codes over the ring Zp[u]/〈uk〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z _p[u]/\langle u^k\rangle $$\end{document} [J].
Abhay Kumar Singh ;
Pramod Kumar Kewat .
Designs, Codes and Cryptography, 2015, 74 (1) :1-13
[26]   A class of constacyclic codes and skew constacyclic codes over Z2s+uZ2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {\mathbb {Z}}_{2^s}+u\pmb {\mathbb {Z}}_{2^s}$$\end{document} and their gray images [J].
Raj Kumar ;
Maheshanand Bhaintwal .
Journal of Applied Mathematics and Computing, 2021, 66 (1-2) :111-128
[29]   Additive polycyclic codes over F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {\pmb {\varvec{F}}}_{4}$$\end{document} induced by nonbinary polynomials [J].
Taher Abualrub ;
Arezoo Soufi Karbaski ;
Nuh Aydin ;
Peihan Liu .
Journal of Applied Mathematics and Computing, 2023, 69 (6) :4821-4832
[30]   Repeated root cyclic codes over ℤp2+uℤp2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {Z}_{p^{2}}+u\mathbb {Z}_{p^{2}}$\end{document} and their Lee distances [J].
Raj Kumar ;
Maheshanand Bhaintwal .
Cryptography and Communications, 2022, 14 (3) :551-577