共 50 条
- [1] New EAQEC codes from cyclic codes over Z4+vZ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{4}+v{\mathbb {Z}}_{4}$$\end{document} Quantum Information Processing, 23 (3)
- [2] Some classes of linear codes over Z4+vZ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4+v\mathbb {Z}_4$$\end{document} and their applications to construct good and new Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4$$\end{document}-linear codes Applicable Algebra in Engineering, Communication and Computing, 2017, 28 (2) : 131 - 153
- [3] On Z2Z4[ξ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{2}{\mathbb {Z}}_{4}[\xi ]$$\end{document}-skew cyclic codes Journal of Applied Mathematics and Computing, 2022, 68 (3) : 1613 - 1633
- [4] Z2Z4Z8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{2}{\mathbb {Z}}_{4}{\mathbb {Z}}_{8}$$\end{document}-Cyclic codes Journal of Applied Mathematics and Computing, 2019, 60 (1-2) : 327 - 341
- [5] Some results on linear codes over the ring Z4+uZ4+vZ4+uvZ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4+u\mathbb {Z}_4+v\mathbb {Z}_4+uv\mathbb {Z}_4$$\end{document} Journal of Applied Mathematics and Computing, 2017, 54 : 307 - 324
- [6] Permutation decoding of Z2Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_2{\mathbb {Z}}_4$$\end{document}-linear codes Designs, Codes and Cryptography, 2015, 76 (2) : 269 - 277
- [7] Z2Z2[u4]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2\mathbb {Z}_2[u^4]$$\end{document}-cyclic codes and their duals Computational and Applied Mathematics, 2022, 41 (4)
- [8] Self-dual skew-codes of odd lengths over Z4+uZ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4+u\mathbb {Z}_4$$\end{document} Cryptography and Communications, 2025, 17 (2) : 511 - 523
- [9] Enumeration of Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_4$$\end{document}-double cyclic codes Journal of Applied Mathematics and Computing, 2022, 68 (5) : 3251 - 3261
- [10] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}_2\mathbb{Z}_4}$$\end{document}-linear codes: rank and kernel Designs, Codes and Cryptography, 2010, 56 (1) : 43 - 59