Ritt’s theorem and the Heins map in hyperbolic complex manifolds

被引:0
作者
Marco Abate
Filippo Bracci
机构
[1] Università di Pisa,Dipartimento di Matematica
[2] Università di Roma “Tor Vergata201D,Dipartimento di Matematica
[3] Via della Ricerca Scientifica,undefined
来源
Science in China Series A: Mathematics | 2005年 / 48卷
关键词
holomorphic self-map; fixed point; Wolff point; Ritt’s theorem; Heins map; Stein manifold;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a Kobayashi hyperbolic complex manifold, and assume that X does not contain compact complex submanifolds of positive dimension (e.g., X Stein). We shall prove the following generalization of Ritt’s theorem: every holomorphic self-map f:X→X such that f(X) is relatively compact in X has a unique fixed point τ(f) ∈ X, which is attracting. Furthermore, we shall prove that τ(f) depends holomorphically on f in a suitable sense, generalizing results by Heins, Joseph-Kwack and the second author.
引用
收藏
页码:238 / 243
页数:5
相关论文
共 2 条