An Extension of Sums of Squares Relaxations to Polynomial Optimization Problems Over Symmetric Cones

被引:0
作者
Masakazu Kojima
Masakazu Muramatsu
机构
[1] Tokyo Institute of Technology,Department of Mathematical and Computing Sciences
[2] The University of Electro-Communications,Department of Computer Science
来源
Mathematical Programming | 2007年 / 110卷
关键词
Polynomial optimization problem; Conic program; Symmetric cone; Euclidean Jordan algebra; Sum of squares; Global optimization; Semidefinite program;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is based on a recent work by Kojima which extended sums of squares relaxations of polynomial optimization problems to polynomial semidefinite programs. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_{+}$$\end{document} be a finite dimensional real vector space and a symmetric cone embedded in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}; examples of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_{+}$$\end{document} include a pair of the N-dimensional Euclidean space and its nonnegative orthant, a pair of the N-dimensional Euclidean space and N-dimensional second-order cones, and a pair of the space of m × m real symmetric (or complex Hermitian) matrices and the cone of their positive semidefinite matrices. Sums of squares relaxations are further extended to a polynomial optimization problem over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_{+}$$\end{document}, i.e., a minimization of a real valued polynomial a(x) in the n-dimensional real variable vector x over a compact feasible region \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ {\bf x} : b({\bf x}) \in \varepsilon_{+}\}$$\end{document}, where b(x) denotes an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}- valued polynomial in x. It is shown under a certain moderate assumption on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}-valued polynomial b(x) that optimal values of a sequence of sums of squares relaxations of the problem, which are converted into a sequence of semidefinite programs when they are numerically solved, converge to the optimal value of the problem.
引用
收藏
页码:315 / 336
页数:21
相关论文
共 50 条
[41]   Polynomial convergence of Mehrotra-type predictor-corrector algorithm for the Cartesian P*(κ)-LCP over symmetric cones [J].
Liu, Xinze ;
Liu, Hongwei ;
Wang, Weiwei .
OPTIMIZATION, 2015, 64 (04) :815-837
[42]   A Class of Polynomial Interior Point Algorithms for the Cartesian P-Matrix Linear Complementarity Problem over Symmetric Cones [J].
G. Q. Wang ;
Y. Q. Bai .
Journal of Optimization Theory and Applications, 2012, 152 :739-772
[43]   A Class of Polynomial Interior Point Algorithms for the Cartesian P-Matrix Linear Complementarity Problem over Symmetric Cones [J].
Wang, G. Q. ;
Bai, Y. Q. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (03) :739-772
[44]   Tight Sum-of-squares Lower Bounds for Binary Polynomial2 Optimization Problems [J].
Kurpisz, Adam ;
Leppanen, Samuli ;
Mastrolilli, Monaldo .
ACM TRANSACTIONS ON COMPUTATION THEORY, 2024, 16 (01)
[45]   An Arc Search Interior-Point Algorithm for Monotone Linear Complementarity Problems over Symmetric Cones [J].
Pirhaji, Mohammad ;
Zangiabadi, Maryam ;
Mansouri, Hossein ;
Amin, Saman H. .
MATHEMATICAL MODELLING AND ANALYSIS, 2018, 23 (01) :1-16
[46]   SMOOTHING NEWTON ALGORITHM BASED ON A REGULARIZED ONE-PARAMETRIC CLASS OF SMOOTHING FUNCTIONS FOR GENERALIZED COMPLEMENTARITY PROBLEMS OVER SYMMETRIC CONES [J].
Liu, Xiao-Hong ;
Gu, Wei-Zhe .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2010, 6 (02) :363-380
[47]   Algorithm 950: Ncpol2sdpa-Sparse Semidefinite Programming Relaxations for Polynomial Optimization Problems of Noncommuting Variables [J].
Wittek, Peter .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2015, 41 (03)
[48]   A Note on the Paper "Linear Complementarity Problems Over Symmetric Cones: Characterization of Qb-Transformations and Existence Results" [J].
Lopez, Julio ;
Lopez, Ruben ;
Ramirez, Hector .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 163 (01) :351-354
[49]   A Note on the Paper “Linear Complementarity Problems Over Symmetric Cones: Characterization of Qb-Transformations and Existence Results” [J].
Julio López ;
Rúben López ;
Héctor Ramírez .
Journal of Optimization Theory and Applications, 2014, 163 :351-354
[50]   A New Infeasible Mehrotra-Type Predictor–Corrector Algorithm for Nonlinear Complementarity Problems Over Symmetric Cones [J].
Huali Zhao ;
Hongwei Liu .
Journal of Optimization Theory and Applications, 2018, 176 :410-427