An Extension of Sums of Squares Relaxations to Polynomial Optimization Problems Over Symmetric Cones

被引:0
作者
Masakazu Kojima
Masakazu Muramatsu
机构
[1] Tokyo Institute of Technology,Department of Mathematical and Computing Sciences
[2] The University of Electro-Communications,Department of Computer Science
来源
Mathematical Programming | 2007年 / 110卷
关键词
Polynomial optimization problem; Conic program; Symmetric cone; Euclidean Jordan algebra; Sum of squares; Global optimization; Semidefinite program;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is based on a recent work by Kojima which extended sums of squares relaxations of polynomial optimization problems to polynomial semidefinite programs. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_{+}$$\end{document} be a finite dimensional real vector space and a symmetric cone embedded in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}; examples of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_{+}$$\end{document} include a pair of the N-dimensional Euclidean space and its nonnegative orthant, a pair of the N-dimensional Euclidean space and N-dimensional second-order cones, and a pair of the space of m × m real symmetric (or complex Hermitian) matrices and the cone of their positive semidefinite matrices. Sums of squares relaxations are further extended to a polynomial optimization problem over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_{+}$$\end{document}, i.e., a minimization of a real valued polynomial a(x) in the n-dimensional real variable vector x over a compact feasible region \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ {\bf x} : b({\bf x}) \in \varepsilon_{+}\}$$\end{document}, where b(x) denotes an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}- valued polynomial in x. It is shown under a certain moderate assumption on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}-valued polynomial b(x) that optimal values of a sequence of sums of squares relaxations of the problem, which are converted into a sequence of semidefinite programs when they are numerically solved, converge to the optimal value of the problem.
引用
收藏
页码:315 / 336
页数:21
相关论文
共 50 条
[31]   Optimality Conditions for Problems over Symmetric Cones and a Simple Augmented Lagrangian Method [J].
Lourenco, Bruno F. ;
Fukuda, Ellen H. ;
Fukushima, Masao .
MATHEMATICS OF OPERATIONS RESEARCH, 2018, 43 (04) :1233-1251
[32]   Polynomial Convergence of Second-Order Mehrotra-Type Predictor-Corrector Algorithms over Symmetric Cones [J].
Changhe Liu ;
Hongwei Liu ;
Xinze Liu .
Journal of Optimization Theory and Applications, 2012, 154 :949-965
[33]   An Infeasible Interior Point Method for Linear Complementarity Problems over Symmetric Cones [J].
Potra, Florian A. .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 :1403-1406
[34]   Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients [J].
Kaltofen, Erich L. ;
Li, Bin ;
Yang, Zhengfeng ;
Zhi, Lihong .
JOURNAL OF SYMBOLIC COMPUTATION, 2012, 47 (01) :1-15
[35]   Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones [J].
Yoshise, Akiko .
SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (04) :1129-1153
[36]   DUAL CERTIFICATES AND EFFICIENT RATIONAL SUM-OF-SQUARES DECOMPOSITIONS FOR POLYNOMIAL OPTIMIZATION OVER COMPACT SETS [J].
Davis, Maria M. ;
Papp, David .
SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (04) :2461-2492
[37]   An accelerated first-order method for solving SOS relaxations of unconstrained polynomial optimization problems [J].
Bertsimas, Dimitris ;
Freund, Robert M. ;
Sun, Xu Andy .
OPTIMIZATION METHODS & SOFTWARE, 2013, 28 (03) :424-441
[38]   Semidefinite programming relaxations through quadratic reformulation for box-constrained polynomial optimization problems [J].
Elloumi, Sourour ;
Lambert, Amelie ;
Lazare, Arnaud .
2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT 2019), 2019, :1498-1503
[39]   Extension of primal-dual interior point methods to diff-convex problems on symmetric cones [J].
Valkonen, Tuomo .
OPTIMIZATION, 2013, 62 (03) :345-377
[40]   Iterative complexities of a class of homogeneous algorithms for monotone nonlinear complementarity problems over symmetric cones [J].
Zhao, Huali ;
Liu, Hongwei .
OPTIMIZATION, 2018, 67 (09) :1505-1521