An Extension of Sums of Squares Relaxations to Polynomial Optimization Problems Over Symmetric Cones

被引:0
作者
Masakazu Kojima
Masakazu Muramatsu
机构
[1] Tokyo Institute of Technology,Department of Mathematical and Computing Sciences
[2] The University of Electro-Communications,Department of Computer Science
来源
Mathematical Programming | 2007年 / 110卷
关键词
Polynomial optimization problem; Conic program; Symmetric cone; Euclidean Jordan algebra; Sum of squares; Global optimization; Semidefinite program;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is based on a recent work by Kojima which extended sums of squares relaxations of polynomial optimization problems to polynomial semidefinite programs. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_{+}$$\end{document} be a finite dimensional real vector space and a symmetric cone embedded in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}; examples of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_{+}$$\end{document} include a pair of the N-dimensional Euclidean space and its nonnegative orthant, a pair of the N-dimensional Euclidean space and N-dimensional second-order cones, and a pair of the space of m × m real symmetric (or complex Hermitian) matrices and the cone of their positive semidefinite matrices. Sums of squares relaxations are further extended to a polynomial optimization problem over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_{+}$$\end{document}, i.e., a minimization of a real valued polynomial a(x) in the n-dimensional real variable vector x over a compact feasible region \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ {\bf x} : b({\bf x}) \in \varepsilon_{+}\}$$\end{document}, where b(x) denotes an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}- valued polynomial in x. It is shown under a certain moderate assumption on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}-valued polynomial b(x) that optimal values of a sequence of sums of squares relaxations of the problem, which are converted into a sequence of semidefinite programs when they are numerically solved, converge to the optimal value of the problem.
引用
收藏
页码:315 / 336
页数:21
相关论文
共 50 条
[21]   HOMOGENEOUS ALGORITHMS FOR MONOTONE COMPLEMENTARITY PROBLEMS OVER SYMMETRIC CONES [J].
Yoshise, Akiko .
PACIFIC JOURNAL OF OPTIMIZATION, 2009, 5 (02) :313-337
[22]   CONVERGENT SEMIDEFINITE PROGRAMMING RELAXATIONS FOR GLOBAL BILEVEL POLYNOMIAL OPTIMIZATION PROBLEMS [J].
Jeyakumar, V. ;
Lasserre, J. B. ;
Li, G. ;
Pham, T. S. .
SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) :753-780
[23]   Some global uniqueness and solvability results for linear complementarity problems over symmetric cones [J].
Gowda, M. Seetharama ;
Sznajder, R. .
SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (02) :461-481
[24]   Jordan-algebraic aspects of nonconvex optimization over symmetric cones [J].
Faybusovich, L ;
Lu, Y .
APPLIED MATHEMATICS AND OPTIMIZATION, 2006, 53 (01) :67-77
[25]   Jordan-Algebraic Aspects of Nonconvex Optimization over Symmetric Cones [J].
Leonid Faybusovich ;
Ye Lu .
Applied Mathematics and Optimization, 2006, 53 :67-77
[26]   Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones [J].
Sturm, JF .
OPTIMIZATION METHODS & SOFTWARE, 1999, 11-2 (1-4) :625-653
[27]   Linear Complementarity Problems over Symmetric Cones: Characterization of Qb-transformations and Existence Results [J].
Julio López ;
Rúben López ;
Héctor C. Ramírez .
Journal of Optimization Theory and Applications, 2013, 159 :741-768
[28]   Linear Complementarity Problems over Symmetric Cones: Characterization of Qb-transformations and Existence Results [J].
Lopez, Julio ;
Lopez, Ruben ;
Ramirez, Hector C. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (03) :741-768
[29]   Polynomial Convergence of Second-Order Mehrotra-Type Predictor-Corrector Algorithms over Symmetric Cones [J].
Liu, Changhe ;
Liu, Hongwei ;
Liu, Xinze .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (03) :949-965
[30]   On the P*(κ) horizontal linear complementarity problems over Cartesian product of symmetric cones [J].
Asadi, S. ;
Mansouri, H. ;
Darvay, Zs. ;
Zangiabadi, M. .
OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (02) :233-257