An Extension of Sums of Squares Relaxations to Polynomial Optimization Problems Over Symmetric Cones
被引:0
作者:
Masakazu Kojima
论文数: 0引用数: 0
h-index: 0
机构:Tokyo Institute of Technology,Department of Mathematical and Computing Sciences
Masakazu Kojima
Masakazu Muramatsu
论文数: 0引用数: 0
h-index: 0
机构:Tokyo Institute of Technology,Department of Mathematical and Computing Sciences
Masakazu Muramatsu
机构:
[1] Tokyo Institute of Technology,Department of Mathematical and Computing Sciences
[2] The University of Electro-Communications,Department of Computer Science
来源:
Mathematical Programming
|
2007年
/
110卷
关键词:
Polynomial optimization problem;
Conic program;
Symmetric cone;
Euclidean Jordan algebra;
Sum of squares;
Global optimization;
Semidefinite program;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
This paper is based on a recent work by Kojima which extended sums of squares relaxations of polynomial optimization problems to polynomial semidefinite programs. Let
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon$$\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon_{+}$$\end{document} be a finite dimensional real vector space and a symmetric cone embedded in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon$$\end{document}; examples of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon$$\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon_{+}$$\end{document} include a pair of the N-dimensional Euclidean space and its nonnegative orthant, a pair of the N-dimensional Euclidean space and N-dimensional second-order cones, and a pair of the space of m × m real symmetric (or complex Hermitian) matrices and the cone of their positive semidefinite matrices. Sums of squares relaxations are further extended to a polynomial optimization problem over \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon_{+}$$\end{document}, i.e., a minimization of a real valued polynomial a(x) in the n-dimensional real variable vector x over a compact feasible region \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{ {\bf x} : b({\bf x}) \in \varepsilon_{+}\}$$\end{document}, where b(x) denotes an \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon$$\end{document}- valued polynomial in x. It is shown under a certain moderate assumption on the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon$$\end{document}-valued polynomial b(x) that optimal values of a sequence of sums of squares relaxations of the problem, which are converted into a sequence of semidefinite programs when they are numerically solved, converge to the optimal value of the problem.
机构:
Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R ChinaBeijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China
Luo, Ziyan
Xiu, Naihua
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Jiaotong Univ, Sch Sci, Dept Math, Beijing 100044, Peoples R ChinaBeijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China
Xiu, Naihua
Kong, Lingchen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Jiaotong Univ, Sch Sci, Dept Math, Beijing 100044, Peoples R ChinaBeijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China