Advanced quantum techniques for future gravitational-wave detectors

被引:0
作者
Stefan L. Danilishin
Farid Ya. Khalili
Haixing Miao
机构
[1] Leibniz Universität Hannover and Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Institut für Theoretische Physik
[2] M.V. Lomonosov Moscow State University,Faculty of Physics
[3] Russian Quantum Center,School of Physics and Astronomy and Institute of Gravitational Wave Astronomy
[4] University of Birmingham,undefined
来源
Living Reviews in Relativity | 2019年 / 22卷
关键词
Gravitational-wave detectors; Optomechanics; Quantum measurement theory; Quantum noise; Standard quantum limit; Fundamental quantum limit; Optical rigidity; Quantum speed meter; Squeezed light; Back-action evasion; Atomic spin ensemble; White-light cavity;
D O I
暂无
中图分类号
学科分类号
摘要
Quantum fluctuation of light limits the sensitivity of advanced laser interferometric gravitational-wave detectors. It is one of the principal obstacles on the way towards the next-generation gravitational-wave observatories. The envisioned significant improvement of the detector sensitivity requires using quantum non-demolition measurement and back-action evasion techniques, which allow us to circumvent the sensitivity limit imposed by the Heisenberg uncertainty principle. In our previous review article (Danilishin and Khalili in Living Rev Relativ 15:5, 2012), we laid down the basic principles of quantum measurement theory and provided the framework for analysing the quantum noise of interferometers. The scope of this paper is to review novel techniques for quantum noise suppression proposed in the recent years and put them in the same framework. Our delineation of interferometry schemes and topologies is intended as an aid in the process of selecting the design for the next-generation gravitational-wave observatories.
引用
收藏
相关论文
共 3227 条
[1]  
Aasi J.(2013)Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light Nature Photonics 7 613-619
[2]  
Abadie J.(2017)Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A Astrophys J Lett 848 L13-914
[3]  
Abbott B. P.(2017)Multi-messenger observations of a binary neutron star merger Astrophys J Lett 848 L12-1452
[4]  
Abbott R.(2017)Exploring the sensitivity of next generation gravitational wave detectors Classical and Quantum Gravity 34 044001-1358
[5]  
Abbott T. D.(2017)GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence The Astrophysical Journal 851 L35-1114
[6]  
Abernathy M. R.(2014)Advanced Virgo: a second-generation interferometric gravitational wave detector Classical and Quantum Gravity 32 024001-43
[7]  
Adams C.(2007)Entanglement in continuous-variable systems: recent advances and current perspectives J Phys A: Math Theor 40 7821-256
[8]  
Adams T.(2009)Near-field cavity optomechanics with nanomechanical oscillators Nature Phys 5 909-246
[9]  
Addesso P.(2014)Cavity optomechanics Rev Mod Phys 86 1391-85
[10]  
Adhikari R. X.(1999)Polarization Sagnac interferometer with a common-path local oscillator for heterodyne detection J Opt Soc Am B 16 1354-234