On Isoperimetric Profiles of Finitely Generated Groups

被引:0
作者
Anna Erschler
机构
[1] St. Petersburg Branch of Steklov Mathematical Institute,
[2] IHES,undefined
[3] Le Bois-Marie,undefined
来源
Geometriae Dedicata | 2003年 / 100卷
关键词
isoperimetric profile; Følner sets; amenable group; wreath product;
D O I
暂无
中图分类号
学科分类号
摘要
We find up to multiplicative constant isoperimetric profiles of wreath products and related groups. Those are the first examples where the explicitly calculated asymptotics of isoperimetric profile is neither polynomial nor exponential.
引用
收藏
页码:157 / 171
页数:14
相关论文
共 18 条
  • [1] Coulhon T.(1993)Isopérimétrie pour les groupes et variétés Rev. Math. Iberoamericana 9 293-314
  • [2] Saloff-Coste L.(1999)An example of growth rate for random walk on group Russian Math. Surveys 54 1023-1024
  • [3] Dyubina A.(1999)Characteristics of random walks on wreath product of groups Zapiski Nauchn. Sem. POMI 256 31-37
  • [4] Dyubina A.(2000)Instability of the virtual solvability and the property of being virtually torsion-free for quasi-isometric groups Internat. Math. Res. Notices 21 1097-1101
  • [5] Dyubina A.(2001)Drift and entropy growth for random walks on groups Russian Math. Surveys 56 179-180
  • [6] Erschler A.(1955)On groups with full Banach mean value Math. Scand. 3 243-244
  • [7] Følner E.(2001)The lamplighter group generated by 2-state automaton, and its spectrum Geom. Dedicata. 87 209-244
  • [8] Grigorchuk R. I.(1980)The spectral measure of transition operator and harmonic functions connected with random walks on discrete groups Zap. Nauchn. Sem. LOMI 97 102-109
  • [9] Zuk A.(1983)Random walks on discrete groups: Boundary and entropy Ann. Probab. 11 457-490
  • [10] Kaimanovich V.(1982)Une inégalité isopérimétrique sur le groupe de Heisenberg C.R. Acad. Sci. Paris, Sér. I. 295 127-130