On the convergence of Newton-type methods under mild differentiability conditions

被引:0
作者
Ioannis K. Argyros
Saïd Hilout
机构
[1] Cameron University,Department of Mathematics Sciences
[2] Poitiers University,Laboratoire de Mathématiques et Applications
来源
Numerical Algorithms | 2009年 / 52卷
关键词
Newton-type method; Recurrent functions; Hölder continuity; Lipschitz continuity; 65H10; 65G99; 65J15; 47H17; 49M15;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the new idea of recurrent functions to provide a new semilocal convergence analysis for Newton-type methods, under mild differentiability conditions. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in some interesting cases (Chen, Ann Inst Stat Math 42:387–401, 1990; Chen, Numer Funct Anal Optim 10:37–48, 1989; Cianciaruso, Numer Funct Anal Optim 24:713–723, 2003; Cianciaruso, Nonlinear Funct Anal Appl 2009; Dennis 1971; Deuflhard 2004; Deuflhard, SIAM J Numer Anal 16:1–10, 1979; Gutiérrez, J Comput Appl Math 79:131–145, 1997; Hernández, J Optim Theory Appl 109:631–648, 2001; Hernández, J Comput Appl Math 115:245–254, 2000; Huang, J Comput Appl Math 47:211–217, 1993; Kantorovich 1982; Miel, Numer Math 33:391–396, 1979; Miel, Math Comput 34:185–202, 1980; Moret, Computing 33:65–73, 1984; Potra, Libertas Mathematica 5:71–84, 1985; Rheinboldt, SIAM J Numer Anal 5:42–63, 1968; Yamamoto, Numer Math 51: 545–557, 1987; Zabrejko, Numer Funct Anal Optim 9:671–684, 1987; Zinc̆ko 1963). Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar-type, and a differential equation are also provided in this study.
引用
收藏
页码:701 / 726
页数:25
相关论文
共 24 条
[1]  
Argyros IK(2004)On the Newton–Kantorovich hypothesis for solving equations J. Comput. Appl. Math. 169 315-332
[2]  
Argyros IK(2004)A unifying local–semilocal convergence analysis and applications for two-point Newton–like methods in Banach space J. Math. Anal. Appl. 298 374-397
[3]  
Argyros IK(2009)On a class of Newton-like methods for solving nonlinear equations J. Comput. Appl. Math. 228 115-122
[4]  
Chen X(1990)On the convergence of Broyden-like methods for nonlinear equations with nondifferentiable terms Ann. Inst. Stat. Math. 42 387-401
[5]  
Chen X(1989)Convergence domains of certain iterative methods for solving nonlinear equations Numer. Funct. Anal. Optim. 10 37-48
[6]  
Yamamoto T(2003)Newton–Kantorovich aproximations when the derivative is Hölderian: old and new results Numer. Funct. Anal. Optim. 24 713-723
[7]  
Cianciaruso F(1979)Affine invariant convergence theorems for Newton’s method and extensions to related methods SIAM J. Numer. Anal. 16 1-10
[8]  
De Pascale E(1997)A new semilocal convergence theorem for Newton’s method J. Comput. Appl. Math. 79 131-145
[9]  
Deuflhard P(2001)The Newton method for operators with Hölder continuous first derivatives J. Optim. Theory Appl. 109 631-648
[10]  
Heindl G(2000)Secant-like methods for slving nonlinear integral equations of the Hammerstein type J. Comput. Appl. Math. 115 245-254