Broadening Perspectives of Artificial Intelligence in Echocardiography

被引:2
作者
Seetharam, Karthik [1 ,2 ]
Thyagaturu, Harshith [1 ]
Ferreira, Gabriel Lora [3 ]
Patel, Aditya [2 ]
Patel, Chinmay [4 ]
Elahi, Asim [2 ]
Pachulski, Roman [5 ]
Shah, Jilan [2 ]
Mir, Parvez [2 ]
Thodimela, Arunita [2 ]
Pala, Manya [2 ]
Thet, Zeyar [2 ]
Hamirani, Yasmin [6 ]
机构
[1] West Virgina Univ, Heart & Vasc Inst, Div Cardiovasc Dis, 1 Med Ctr Dr, Morgantown, WV 26506 USA
[2] Wyckoff Hts Med Ctr, Brooklyn, NY USA
[3] Houston Methodist Ctr, Med Ctr, Houston, TX USA
[4] Univ Pittsburg, Med Ctr, Harrisburg, PA USA
[5] St Johns Episcopal Hosp South Shore, South Shore, NY USA
[6] Rutgers State Univ, Robert Woods Johnson Univ Hosp, New Brusnwick, NJ USA
基金
英国科研创新办公室;
关键词
Artificial intelligence; Machine learning; Echocardiography; HEART-FAILURE; STRAIN; ASSOCIATION;
D O I
10.1007/s40119-024-00368-3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Echocardiography frequently serves as the first-line treatment of diagnostic imaging for several pathological entities in cardiology. Artificial intelligence (AI) has been growing substantially in information technology and various commercial industries. Machine learning (ML), a branch of AI, has been shown to expand the capabilities and potential of echocardiography. ML algorithms expand the field of echocardiography by automated assessment of the ejection fraction and left ventricular function, integrating novel approaches such as speckle tracking or tissue Doppler echocardiography or vector flow mapping, improved phenotyping, distinguishing between cardiac conditions, and incorporating information from mobile health and genomics. In this review article, we assess the impact of AI and ML in echocardiography. Echocardiography is the most common test in cardiovascular imaging and helps diagnose multiple different diseases. Machine learning, a branch of artificial intelligence (AI), will reduce the workload for medical professionals and help improve clinical workflows. It can rapidly calculate a lot of important cardiac parameters such as the ejection fraction or important metrics during different phases of the cardiac cycle. Machine learning algorithms can include new technology in echocardiography such as speckle tracking, tissue Doppler echocardiography, vector flow mapping, and other approaches in a user-friendly manner. Furthermore, it can help find new subtypes of existing diseases in cardiology. In this review article, we look at the current role of machine learning and AI in the field of echocardiography.
引用
收藏
页码:267 / 279
页数:13
相关论文
共 53 条
[1]   Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases [J].
Ai, Tao ;
Yang, Zhenlu ;
Hou, Hongyan ;
Zhan, Chenao ;
Chen, Chong ;
Lv, Wenzhi ;
Tao, Qian ;
Sun, Ziyong ;
Xia, Liming .
RADIOLOGY, 2020, 296 (02) :E32-E40
[2]   Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging [J].
Al'Aref, Subhi J. ;
Anchouche, Khalil ;
Singh, Gurpreet ;
Slomka, Piotr J. ;
Kolli, Kranthi K. ;
Kumar, Amit ;
Pandey, Mohit ;
Maliakal, Gabriel ;
van Rosendael, Alexander R. ;
Beecy, Ashley N. ;
Berman, Daniel S. ;
Leipsic, Jonathan ;
Nieman, Koen ;
Andreini, Daniele ;
Pontone, Gianluca ;
Schoepf, U. Joseph ;
Shaw, Leslee J. ;
Chang, Hyuk-Jae ;
Narula, Jagat ;
Bax, Jeroen J. ;
Guan, Yuanfang ;
Min, James K. .
EUROPEAN HEART JOURNAL, 2019, 40 (24) :1975-+
[3]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[4]   Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction Without Volume Measurements Using a Machine Learning Algorithm Mimicking a Human Expert [J].
Asch, Federico M. ;
Poilvert, Nicolas ;
Abraham, Theodore ;
Jankowski, Madeline ;
Cleve, Jayne ;
Adams, Michael ;
Romano, Nathanael ;
Hong, Ha ;
Mor-Avi, Victor ;
Martin, Randolph P. ;
Lang, Roberto M. .
CIRCULATION-CARDIOVASCULAR IMAGING, 2019, 12 (09)
[5]   Reliability and feasibility of longitudinal AFI global and segmental strain compared with 2D left ventricular volumes and ejection fraction: intra- and inter-operator, test-retest, and inter-cycle reproducibility [J].
Barbier, Paolo ;
Mirea, Oana ;
Cefalu, Claudia ;
Maltagliati, Anna ;
Savioli, Gabriele ;
Guglielmo, Marco .
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2015, 16 (06) :642-652
[6]   Deep Learning in Cardiology [J].
Bizopoulos, Paschalis ;
Koutsouris, Dimitrios .
IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2019, 12 :168-193
[7]   Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC Heart Failure Long-Term Registry [J].
Chioncel, Ovidiu ;
Lainscak, Mitja ;
Seferovic, Petar M. ;
Anker, Stefan D. ;
Crespo-Leiro, Maria G. ;
Harjola, Veli-Pekka ;
Parissis, John ;
Laroche, Cecile ;
Piepoli, Massimo Francesco ;
Fonseca, Candida ;
Mebazaa, Alexandre ;
Lund, Lars ;
Ambrosio, Giuseppe A. ;
Coats, Andrew J. ;
Ferrari, Roberto ;
Ruschitzka, Frank ;
Maggioni, Aldo P. ;
Filippatos, Gerasimos .
EUROPEAN JOURNAL OF HEART FAILURE, 2017, 19 (12) :1574-1585
[8]   A Network-Based "Phenomics" Approach for Discovering Patient Subtypes From High-Throughput Cardiac Imaging Data [J].
Cho, Jung Sun ;
Shrestha, Sirish ;
Kagiyama, Nobuyuki ;
Hu, Lan ;
Ghaffar, Yasir Abdul ;
Casaclang-Verzosa, Grace ;
Zeb, Irfan ;
Sengupta, Partho P. .
JACC-CARDIOVASCULAR IMAGING, 2020, 13 (08) :1655-1670
[9]   Artificial intelligence applied to support medical decisions for the automatic analysis of echocardiogram images: A systematic review [J].
de Siqueira, Vilson Soares ;
Borges, Moises Marcos ;
Furtado, Rogerio Gomes ;
Dourado, Colandy Nunes ;
da Costa, Ronaldo Martins .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 120
[10]   Artificial Intelligence in Cardiovascular Imaging JACC State-of-the-Art Review [J].
Dey, Damini ;
Slomka, Piotr J. ;
Leeson, Paul ;
Comaniciu, Dorin ;
Shrestha, Sirish ;
Sengupta, Partho P. ;
Marwick, Thomas H. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (11) :1317-1335