On numerical methods for the semi-nonrelativistic limit system of the nonlinear Dirac equation

被引:0
作者
Tobias Jahnke
Michael Kirn
机构
[1] Institute for Applied and Numerical Mathematics,Karlsruhe Institute of Technology, Department of Mathematics
来源
BIT Numerical Mathematics | 2023年 / 63卷
关键词
Nonlinear Dirac equation; Time integration; Error bounds; Nonrelativistic limit regime; 35Q41; 65M12; 65M15; 81Q05; 65M70;
D O I
暂无
中图分类号
学科分类号
摘要
Solving the nonlinear Dirac equation in the nonrelativistic limit regime numerically is difficult, because the solution oscillates in time with frequency of Oε-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {O}} \! \left( \varepsilon ^{-2}\right) $$\end{document}, where 0<ε≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\varepsilon \ll 1$$\end{document} is inversely proportional to the speed of light. Yongyong Cai and Yan Wang have shown, however, that such solutions can be approximated up to an error of Oε2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {O}} \! \left( \varepsilon ^2\right) $$\end{document} by solving the semi-nonrelativistic limit system, which is a non-oscillatory problem. For this system, we construct a two-step method, called the explicit exponential midpoint rule, and prove second-order convergence of the semi-discretization in time. Furthermore, we construct a benchmark method based on standard techniques and compare the efficiency of both methods. Numerical experiments show that the new integrator reduces the computational costs per time step to 40% and within a given runtime improves the accuracy significantly.
引用
收藏
相关论文
共 54 条
  • [1] Alvarez A(1992)Linearized Crank-Nicholson scheme for nonlinear Dirac equations [Corrected title: Linearized Crank-Nicolson scheme for nonlinear Dirac equations] J. Comput. Phys. 99 348-350
  • [2] Bao W(2016)Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime Sci. China Math. 59 1461-1494
  • [3] Cai Y(2021)Uniform error bounds of time-splitting methods for the nonlinear Dirac equation in the nonrelativistic regime without magnetic potential SIAM J. Numer. Anal. 59 1040-1066
  • [4] Jia X(1998)(Semi)-nonrelativistic limits of the Dirac equation with external time-dependent electromagnetic field Comm. Math. Phys. 197 405-425
  • [5] Yin J(2018)A uniformly accurate (UA) multiscale time integrator pseudospectral method for the nonlinear Dirac equation in the nonrelativistic limit regime ESAIM Math. Model. Numer. Anal. 52 543-566
  • [6] Bao W(2019)Uniformly accurate nested Picard iterative integrators for the Dirac equation in the nonrelativistic limit regime SIAM J. Numer. Anal. 57 1602-1624
  • [7] Cai Y(2020)(Semi-)nonrelativisitic limit of the nonlinear Dirac equations J. Math. Study 53 125-142
  • [8] Yin J(2022)Uniformly accurate nested Picard iterative integrators for the nonlinear Dirac equation in the nonrelativistic regime Multiscale Model. Simul. 20 164-187
  • [9] Bechouche P(2006)A class of explicit multistep exponential integrators for semilinear problems Numer. Math. 102 367-381
  • [10] Mauser NJ(1928)The quantum theory of the electron Proc. A 117 610-624