The total mixed curvature of open curves in E3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^3$$\end{document}

被引:0
|
作者
Kazuyuki Enomoto
Jin-ichi Itoh
机构
[1] Tokyo University of Science,Faculty of Industrial Science and Technology
[2] Kumamoto University,Faculty of Education
关键词
Curve; Curvature; Torsion; 53A04;
D O I
10.1007/s10711-017-0269-2
中图分类号
学科分类号
摘要
The total mixed curvature of a curve in E3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^3$$\end{document} is defined as the integral of κ2+τ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\kappa ^2+\tau ^2}$$\end{document}, where κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} is the curvature and τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is the torsion. The total mixed curvature is the length of the spherical curve defined by the principal normal vector field. We study the infimum of the total mixed curvature in a family of open curves whose endpoints and principal normal vectors at the endpoints are prescribed. In our previous works, we studied similar problems for the total absolute curvature, which is the length of the spherical curve defined by the unit tangent vector, and for the total absolute torsion, which is the length of the spherical curve defined by the binormal vector.
引用
收藏
页码:131 / 140
页数:9
相关论文
共 38 条