Direct finiteness of representable regular ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-rings

被引:0
作者
Christian Herrmann
机构
[1] Technische Universität Darmstadt FB4,
关键词
Regular ring with involution; Representation; Direct finiteness; 16E50; 16W10;
D O I
10.1007/s00012-019-0577-5
中图分类号
学科分类号
摘要
We show that a von Neumann regular ring with involution is directly finite provided that it admits a representation as a ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-ring of endomorphisms of a vector space endowed with a non-degenerate orthosymmetric sesquilinear form.
引用
收藏
相关论文
共 9 条
  • [1] Ara P(1984)On regular rings with involution Arch. Math. 42 126-130
  • [2] Menal P(2014)On varieties of modular ortholattices that are generated by their finite dimensional members Algebra Universalis 72 349-357
  • [3] Herrmann C(2014)Rings of quotients of finite Algebra Logic 53 298-322
  • [4] Roddy MS(2016)-algebras: representation and algebraic approximation Acta Sci. Math. (Szeged) 82 395-442
  • [5] Herrmann C(1984)Linear representations of regular rings and complemented modular lattices with involution Matematika 39 29-32
  • [6] Semenova M(undefined)Regular rings with involution. Vestnik Moskovskogo Universiteta. undefined undefined undefined-undefined
  • [7] Herrmann C(undefined)undefined undefined undefined undefined-undefined
  • [8] Semenova M(undefined)undefined undefined undefined undefined-undefined
  • [9] Tyukavkin DV(undefined)undefined undefined undefined undefined-undefined