Effective spectral function for quasielastic scattering on nuclei

被引:0
作者
A. Bodek
M. E. Christy
B. Coopersmith
机构
[1] University of Rochester,Department of Physics and Astronomy
[2] Hampton University,undefined
来源
The European Physical Journal C | 2014年 / 74卷
关键词
Spectral Function; Final State Interaction; Hadronic Final State; Quasielastic Scattering; Meson Exchange Current;
D O I
暂无
中图分类号
学科分类号
摘要
Spectral functions that are used in neutrino event, generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} dependence of predictions of these spectral functions for the QE differential cross sections (d2σ/dQ2dν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d^2\sigma }/{dQ^2 d\nu }$$\end{document}) are in disagreement with the prediction of the ψ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi '$$\end{document} superscaling function which is extracted from fits to quasielastic electron scattering data on nuclear targets. It is known that spectral functions do not fully describe quasielastic scattering because they only model the initial state. Final state interactions distort the shape of the differential cross section at the peak and increase the cross section at the tails of the distribution. We show that the kinematic distributions predicted by the ψ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi '$$\end{document} superscaling formalism can be well described with a modified effective spectral function (ESF). By construction, models using ESF in combination with the transverse enhancement contribution correctly predict electron QE scattering data.
引用
收藏
相关论文
共 37 条
  • [1] Sobczyk J(2008)undefined PoS NUFACT 08 141-undefined
  • [2] Leitner T(2009)undefined Phys. Rev. C79 034601-undefined
  • [3] Buss O(1971)undefined Phys. Rev. Lett. 26 445-undefined
  • [4] Alvarez-Ruso L(1969)undefined Phys. Rev. 184 1154-undefined
  • [5] Moniz EJ(1972)undefined Nucl. Phys. B43 605-undefined
  • [6] Moniz EJ(2000)undefined Eur. Phys. J. A 7 415-undefined
  • [7] Smith RA(1997)undefined Phys. Rev. C55 244-undefined
  • [8] Moniz EJ(1980)undefined Phys. Rev. D23 1070-undefined
  • [9] Benhar O(1981)undefined Phys. Rev. D24 1400-undefined
  • [10] Fantoni S(1972)undefined Nucl. Phys. B36 419-undefined