On generalization of ⊕-cofinitely supplemented modules

被引:0
作者
B. Nisanci
A. Pancar
机构
[1] Ondokuz Mayıs University,
来源
Ukrainian Mathematical Journal | 2010年 / 62卷
关键词
Direct Summand; Valuation Ring; Endomorphism Ring; Radical Supplement; Jacobson Radical;
D O I
暂无
中图分类号
学科分类号
摘要
We study the properties of ⊕-cofinitely radical supplemented modules, or, briefly, cgs⊕-modules. It is shown that a module with summand sum property (SSP) is cgs⊕ if and only if M/w Loc⊕M (w Loc⊕M is the sum of all w-local direct summands of a module M) does not contain any maximal submodule, that every cofinite direct summand of a UC-extending cgs⊕-module is cgs⊕, and that, for any ring R, every free R-module is cgs⊕ if and only if R is semiperfect.
引用
收藏
页码:203 / 209
页数:6
相关论文
共 19 条
[1]  
Alizade R(2001)Modules whose maximal submodules have supplements Commun. Algebra 29 2389-2405
[2]  
Bilhan G(1999)On ⊕-supplemented modules Acta Math. Hungar. 83 161-169
[3]  
Smith PF(2004)⊕-Cofinitely supplemented modules Czech. Math. J. 54 1083-1088
[4]  
Harmancı A(2006)Generalized supplemented modules Taiwan. J. Math. 10 1589-1601
[5]  
Keskin D(2008)On a recent generalization of semiperfect rings Bull. Austral. Math. Soc. 78 317-325
[6]  
Smith PF(2009)Generalized cofinitely semiperfect modules Int. Electron. J. Algebra 5 58-69
[7]  
Çalışıcı H(2006)Duo modules Glasgow Math. J. Trust. 48 533-545
[8]  
Pancar A(2003)On some properties of ⊕-supplemented modules Int. J. Math. Math. Sci. 69 4373-4387
[9]  
Wang Y(2004)Projective modules over the endomorphism ring of a biuniform module J. Pure Appl. Algebra 188 227-246
[10]  
Ding N(undefined)undefined undefined undefined undefined-undefined