共 47 条
- [1] Weissler E.H., Naumann T., Andersson T., Et al., The role of machine learning in clinical research: transforming the future of evidence generation, Trials, 22, (2021)
- [2] Ahuja A., Kefalakes H., Clinical Applications of Artificial Intelligence in Gastroenterology: Excitement and Evidence, Gastroenterology, 163, pp. 341-344, (2022)
- [3] Barua I., Vinsard D.G., Jodal H.C., Et al., Artificial intelligence for polyp detection during colonoscopy: a systematic review and meta-analysis, Endoscopy, 53, pp. 277-284, (2021)
- [4] Wang P., Berzin T.M., Glissen Brown J.R., Et al., Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study, Gut, 68, pp. 1813-1819, (2019)
- [5] Ladabaum U., Shepard J., Weng Y., Et al., Computer-aided Detection of Polyps Does Not Improve Colonoscopist Performance in a Pragmatic Implementation Trial, Gastroenterology, 164, 481-483, (2023)
- [6] Hashimoto R., Requa J., Dao T., Et al., Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett’s esophagus (with video), Gastrointest Endosc, 91, 1264-1271, (2020)
- [7] Ozawa T., Ishihara S., Fujishiro M., Et al., Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis, Gastrointest Endosc, 89, 416-421, (2019)
- [8] Calderaro J., Kather J.N., Artificial intelligence-based pathology for gastrointestinal and hepatobiliary cancers, Gut, 70, pp. 1183-1193, (2021)
- [9] Skrede O.J., De Raedt S., Kleppe A., Et al., Deep learning for prediction of colorectal cancer outcome: a discovery and validation study, Lancet, 395, pp. 350-360, (2020)
- [10] Kou W., Carlson D.A., Baumann A.J., Et al., A multi-stage machine learning model for diagnosis of esophageal manometry, Artif Intell Med, 124, (2022)