An Axiomatic Approach for Degenerations in Triangulated Categories

被引:0
|
作者
Manuel Saorín
Alexander Zimmermann
机构
[1] Universidad de Murcia,Departemento de Matemáticas
[2] Université de Picardie,Département de Mathématiques et LAMFA (UMR 7352 du CNRS)
来源
Applied Categorical Structures | 2016年 / 24卷
关键词
Degeneration; Triangulated categories; Zwara-Riedtmann theorem; Yoshino’s degeneration; Primary 18E30; Secondary 16G10; 16G30; 16E35; 18E35;
D O I
暂无
中图分类号
学科分类号
摘要
We generalise Yoshino’s definition of a degeneration of two Cohen Macaulay modules to a definition of degeneration between two objects in a triangulated category. We derive some natural properties for the triangulated category and the degeneration under which the Yoshino-style degeneration is equivalent to the degeneration defined by a specific distinguished triangle analogous to Zwara’s characterisation of degeneration in module varieties.
引用
收藏
页码:385 / 405
页数:20
相关论文
共 50 条
  • [21] FROM TRIANGULATED CATEGORIES TO MODULE CATEGORIES VIA LOCALISATION
    Buan, Aslak Bakke
    Marsh, Robert J.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (06) : 2845 - 2861
  • [22] Symmetry of the Definition of Degeneration in Triangulated Categories
    Manuel Saorín
    Alexander Zimmermann
    Algebras and Representation Theory, 2019, 22 : 801 - 836
  • [23] K1 for triangulated categories
    Vaknin, A
    K-THEORY, 2001, 24 (01): : 1 - 56
  • [24] Asymptotic shifting numbers in triangulated categories
    Fan, Yu-Wei
    Filip, Simion
    ADVANCES IN MATHEMATICS, 2023, 428
  • [25] Three notions of dimension for triangulated categories
    Elagin, Alexey
    Lunts, Valery A.
    JOURNAL OF ALGEBRA, 2021, 569 : 334 - 376
  • [26] Resolving resolution dimensions in triangulated categories
    Ma, Xin
    Zhao, Tiwei
    OPEN MATHEMATICS, 2021, 19 (01): : 121 - 143
  • [27] REMARKS ON GENERATORS AND DIMENSIONS OF TRIANGULATED CATEGORIES
    Orlov, Dmitri
    MOSCOW MATHEMATICAL JOURNAL, 2009, 9 (01) : 153 - 159
  • [28] Symmetry of the Definition of Degeneration in Triangulated Categories
    Saorin, Manuel
    Zimmermann, Alexander
    ALGEBRAS AND REPRESENTATION THEORY, 2019, 22 (04) : 801 - 836
  • [29] From triangulated categories to abelian categories: cluster tilting in a general framework
    Steffen Koenig
    Bin Zhu
    Mathematische Zeitschrift, 2008, 258 : 143 - 160
  • [30] TRIANGULATED CATEGORIES OF FRAMED BISPECTRA AND FRAMED MOTIVES
    Garkusha, G.
    Panin, I.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2024, : 991 - 1017