Finite polynomial orbits in quadratic rings

被引:0
作者
Roman Marszałek
Władyslaw Narkiewicz
机构
[1] Wrocław University,Institute of Mathematics
来源
The Ramanujan Journal | 2006年 / 12卷
关键词
Polynomial maps; Polynomial cycles; Finite polynomial orbits; Quadratic integers;
D O I
暂无
中图分类号
学科分类号
摘要
All finite orbits of polynomial mappings in one variable in rings of integers of quadratic number fields are determined. The largest such orbit has seven elements and lies in the third cyclotomic field.
引用
收藏
页码:91 / 130
页数:39
相关论文
共 21 条
[1]  
Daberkow M.(1997)Cycles of quadratic polynomials and rational points on a genus 2-curve Journal of Symb Comp. 24 267-283
[2]  
Fieker C.(1997)Scarcity of finite polynomial orbits Duke Math. J. 90 435-463
[3]  
Klüners J.(2000)Arithmetic properties of periodic points of quadratic maps, II Publicat. Math. (Debrecen) 56 405-414
[4]  
Pohst M.(1998)Les points exceptionnels rationnels sur certaines cubiques du premier genre Acta Arith. 82 89-102
[5]  
Roegner K.(1954)Polynomial cycles in algebraic number fields Acta Arith. 5 333-357
[6]  
Wildanger K.(1989)Finite polynomial orbits in finitely generated domains Colloq. Math 58 149-153
[7]  
Flynn E.V.(1997)Periodic points on an algebraic variety Monatsh. Math. 124 309-316
[8]  
Poonen B.(1950)Polynomial cycles in certain local domains Ann. Math. 51 167-177
[9]  
Schaefer E.F.(1994)Cycles of polynomial mappings in several variables Acta Arith. 66 11-22
[10]  
Halter-Koch F.(1994)Cycles of polynomial mappings in several variables over rings of integers in finite extensions of the rationals Manuscr. Math. 83 279-289