Coincidence point and fixed point theorems for a new type of G-contraction multivalued mappings on a metric space endowed with a graph

被引:0
作者
Adisak Hanjing
Suthep Suantai
机构
[1] Chiang Mai University,Department of Mathematics, Faculty of Science
来源
Fixed Point Theory and Applications | / 2015卷
关键词
fixed point; multivalued mappings; Mizoguchi-Takahashi ; -contraction; 47H10; 54H25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a new type of G-contraction multivalued mappings in a metric space endowed with a directed graph is introduced and studied. This type of mappings is more general than that of Mizoguchi and Takahashi (J. Math. Anal. Appl. 141:177-188, 1989), Berinde and Berinde (J. Math. Anal. Appl. 326:772-782, 2007), Du (Topol. Appl. 159:49-56, 2012), and Sultana and Vetrivel (J. Math. Anal. Appl. 417:336-344, 2014). A fixed point and coincidence point theorem for this type of mappings is established. Some examples illustrating our main results are also given. The main results obtained in this paper extend and generalize those in (Tiammee and Suantai in Fixed Point Theory Appl. 2014:70, 2014) and many well-known results in the literature.
引用
收藏
相关论文
共 25 条
[1]  
Nadler SB(1969)Multi-valued contraction mappings Pac. J. Math. 30 475-488
[2]  
Berinde V(2013)The role of Pompeiu-Hausdorff metric in fixed point theory Creative Math. Inform. 22 143-150
[3]  
Pacurar M(2013)Fixed points of multivalued nonself almost contractions J. Appl. Math. 2013 772-782
[4]  
Alghamdi MA(2007)On a general class of multi-valued weakly Picard mappings J. Math. Anal. Appl. 326 1214-1219
[5]  
Berinde V(2010)The contraction principle for set valued mappings on a metric space with graph Comput. Math. Appl. 60 26-42
[6]  
Shahzad N(1972)Fixed points of contractive functions Boll. Unione Mat. Ital. 5 177-188
[7]  
Berinde M(1989)Fixed point theorems for multivalued mappings on complete metric spaces J. Math. Anal. Appl. 141 49-56
[8]  
Berinde V(2012)On coincidence point and fixed point theorems for nonlinear multivalued maps Topol. Appl. 159 1359-1373
[9]  
Beg I(2008)The contraction principle for mappings on a metric space with a graph Proc. Am. Math. Soc. 136 349-357
[10]  
Butt AR(2015)Remarks on monotone multivalued mappings on a metric spaces with a graph J. Inequal. Appl. 2015 1881-1911