共 50 条
Weak perturbations of the p-Laplacian
被引:0
作者:
Tomas Ekholm
Rupert L. Frank
Hynek Kovařík
机构:
[1] Royal Institute of Technology,Department of Mathematics
[2] Mathematics 253-37,DICATAM, Sezione di Matematica
[3] Caltech,undefined
[4] Università degli studi di Brescia,undefined
来源:
Calculus of Variations and Partial Differential Equations
|
2015年
/
53卷
关键词:
p-Laplacian;
Weak coupling;
Sobolev inequalities;
49R05;
35P30;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider the p-Laplacian in Rd\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^d$$\end{document} perturbed by a weakly coupled potential. We calculate the asymptotic expansions of the lowest eigenvalue of such an operator in the weak coupling limit separately for p>d\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p>d $$\end{document} and p=d\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p=d$$\end{document} and discuss the connection with Sobolev interpolation inequalities.
引用
收藏
页码:781 / 801
页数:20
相关论文
共 50 条