Weak perturbations of the p-Laplacian

被引:0
作者
Tomas Ekholm
Rupert L. Frank
Hynek Kovařík
机构
[1] Royal Institute of Technology,Department of Mathematics
[2] Mathematics 253-37,DICATAM, Sezione di Matematica
[3] Caltech,undefined
[4] Università degli studi di Brescia,undefined
来源
Calculus of Variations and Partial Differential Equations | 2015年 / 53卷
关键词
p-Laplacian; Weak coupling; Sobolev inequalities; 49R05; 35P30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the p-Laplacian in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} perturbed by a weakly coupled potential. We calculate the asymptotic expansions of the lowest eigenvalue of such an operator in the weak coupling limit separately for p>d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>d $$\end{document} and p=d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=d$$\end{document} and discuss the connection with Sobolev interpolation inequalities.
引用
收藏
页码:781 / 801
页数:20
相关论文
共 50 条