Weak perturbations of the p-Laplacian

被引:0
|
作者
Tomas Ekholm
Rupert L. Frank
Hynek Kovařík
机构
[1] Royal Institute of Technology,Department of Mathematics
[2] Mathematics 253-37,DICATAM, Sezione di Matematica
[3] Caltech,undefined
[4] Università degli studi di Brescia,undefined
来源
Calculus of Variations and Partial Differential Equations | 2015年 / 53卷
关键词
p-Laplacian; Weak coupling; Sobolev inequalities; 49R05; 35P30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the p-Laplacian in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} perturbed by a weakly coupled potential. We calculate the asymptotic expansions of the lowest eigenvalue of such an operator in the weak coupling limit separately for p>d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>d $$\end{document} and p=d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=d$$\end{document} and discuss the connection with Sobolev interpolation inequalities.
引用
收藏
页码:781 / 801
页数:20
相关论文
共 50 条
  • [1] Weak perturbations of the p-Laplacian
    Ekholm, Tomas
    Frank, Rupert L.
    Kovarik, Hynek
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (3-4) : 781 - 801
  • [2] EXISTENCE RESULTS FOR PERTURBATIONS OF THE P-LAPLACIAN
    COSTA, DG
    MAGALHAES, CA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (03) : 409 - 418
  • [3] Weak solutions for p-Laplacian equation
    Bhuvaneswari, Venkatasubramaniam
    Lingeshwaran, Shangerganesh
    Balachandran, Krishnan
    ADVANCES IN NONLINEAR ANALYSIS, 2012, 1 (04) : 319 - 334
  • [4] Linking and existence results for perturbations of the p-Laplacian
    Fan, XL
    Li, ZC
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (08) : 1413 - 1420
  • [5] On the antimaximum principle for the p-Laplacian and its sublinear perturbations
    Bobkov, Vladimir
    Tanaka, Mieko
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 4 (03):
  • [6] REGULARITY OF WEAK SOLUTION TO P-LAPLACIAN WITH MEASURABLE COEFFICIENT
    周树清
    王远弟
    文海英
    Annals of Differential Equations, 2003, (01) : 118 - 125
  • [7] Periodic solutions of singular nonlinear perturbations of the ordinary p-Laplacian
    Jebelean, P
    Mawhin, J
    ADVANCED NONLINEAR STUDIES, 2002, 2 (03) : 299 - 312
  • [8] WEAK SOLUTIONS TO A COUPLED NONLINEAR SYSTEM WITH THE p-LAPLACIAN OPERATOR
    De Oliveira Castro, Nelson Nery
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2008, 1 (02): : 163 - 170
  • [9] A Weak Galerkin Finite Element Method for p-Laplacian Problem
    Ye, Xiu
    Zhang, Shangyou
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (02) : 219 - 233
  • [10] EXISTENCE OF WEAK SOLUTIONS FOR p-LAPLACIAN PROBLEM WITH IMPULSIVE EFFECTS
    Xu, Jiafa
    Wei, Zhongli
    Ding, Youzheng
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (02): : 501 - 515