The conjugacy problem for the automorphism group of the random graph

被引:0
|
作者
Samuel Coskey
Paul Ellis
Scott Schneider
机构
[1] The Graduate Center of the City University of New York,Department of Mathematics
[2] University of Connecticut,Department of Mathematics
[3] Wesleyan University,Department of Mathematics and Computer Science
来源
Archive for Mathematical Logic | 2011年 / 50卷
关键词
Borel equivalence relations; Random graph; Categorical structure; 03E15; 03C15; 05C80; 08A35;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the conjugacy problem for the automorphism group of the random graph is Borel complete, and discuss the analogous problem for some other countably categorical structures.
引用
收藏
页码:215 / 221
页数:6
相关论文
共 50 条
  • [1] The conjugacy problem for the automorphism group of the random graph
    Coskey, Samuel
    Ellis, Paul
    Schneider, Scott
    ARCHIVE FOR MATHEMATICAL LOGIC, 2011, 50 (1-2) : 215 - 221
  • [2] Conjugacy problem in an automorphism group of an infinite tree
    A. V. Rozhkov
    Mathematical Notes, 1998, 64 : 513 - 517
  • [3] Conjugacy problem in an automorphism group of an infinite tree
    Rozhkov, AV
    MATHEMATICAL NOTES, 1998, 64 (3-4) : 513 - 517
  • [4] Compressed Conjugacy and the Word Problem for Outer Automorphism Groups of Graph Groups
    Haubold, Niko
    Lohrey, Markus
    Mathissen, Christian
    DEVELOPMENTS IN LANGUAGE THEORY, 2010, 6224 : 218 - 230
  • [5] On representing words in the automorphism group of the random graph
    Droste, M.
    Truss, J. K.
    JOURNAL OF GROUP THEORY, 2006, 9 (06) : 815 - 836
  • [6] Conjugacy classes of the automorphism group of a tree
    Gawron, P
    Nekrashevich, VV
    Sushchanskii, VI
    MATHEMATICAL NOTES, 1999, 65 (5-6) : 787 - 790
  • [7] Conjugacy classes of the automorphism group of a tree
    P. Gawron
    V. V. Nekrashevich
    V. I. Sushchanskii
    Mathematical Notes, 1999, 65 : 787 - 790
  • [8] THE CONJUGACY PROBLEM FOR AUTOMORPHISM GROUPS OF HOMOGENEOUS DIGRAPHS
    Coskey, Samuel
    Ellis, Paul
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 12 (01) : 62 - 73
  • [9] The structure of the automorphism group of a factor and cocycle conjugacy of discrete group
    Katayama, Y
    Sutherland, CE
    Takesaki, M
    OPERATOR ALGEBRAS AND QUANTUM FIELD THEORY, 1996, : 166 - 198
  • [10] The automorphism group of the alternating group graph
    Zhou, Jin-Xin
    APPLIED MATHEMATICS LETTERS, 2011, 24 (02) : 229 - 231