Asymptotic Behavior of Weak Solutions to the Inhomogeneous Navier–Stokes Equations

被引:0
|
作者
Pigong Han
Chenggang Liu
Keke Lei
Xuewen Wang
机构
[1] Chinese Academy of Sciences,Academy of Mathematics and Systems Science
[2] University of Chinese Academy of Sciences,School of Mathematical Sciences
关键词
Navier–Stokes equations; Weak solution; Decay rate;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the temporal decay properties of weak solutions to the inhomogeneous incompressible Navier–Stokes equations in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}, n=2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2,3$$\end{document}. The optimal L2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2-$$\end{document}decay rate is established, which coincides with that for the classical homogeneous Navier–Stokes system. Additionally the viscosity coefficient is assumed to Lipschitz continuously depend on density without smallness condition, which is a weaker assumption. The initial data u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0$$\end{document} is only required to be in Lp(Rn)∩L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p({\mathbb {R}}^n)\cap L^2(\mathbb R^n)$$\end{document}, 1≤p<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p<2$$\end{document}.
引用
收藏
相关论文
共 50 条