Asymptotic Behavior of Weak Solutions to the Inhomogeneous Navier–Stokes Equations

被引:0
作者
Pigong Han
Chenggang Liu
Keke Lei
Xuewen Wang
机构
[1] Chinese Academy of Sciences,Academy of Mathematics and Systems Science
[2] University of Chinese Academy of Sciences,School of Mathematical Sciences
来源
Journal of Mathematical Fluid Mechanics | 2022年 / 24卷
关键词
Navier–Stokes equations; Weak solution; Decay rate;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the temporal decay properties of weak solutions to the inhomogeneous incompressible Navier–Stokes equations in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}, n=2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2,3$$\end{document}. The optimal L2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2-$$\end{document}decay rate is established, which coincides with that for the classical homogeneous Navier–Stokes system. Additionally the viscosity coefficient is assumed to Lipschitz continuously depend on density without smallness condition, which is a weaker assumption. The initial data u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0$$\end{document} is only required to be in Lp(Rn)∩L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p({\mathbb {R}}^n)\cap L^2(\mathbb R^n)$$\end{document}, 1≤p<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p<2$$\end{document}.
引用
收藏
相关论文
共 25 条
  • [1] Abidi H(2011)On the decay and stability of global solutions to the 3D inhomogeneous Navier–Stokes equations Comm. Pure Appl. Math. 64 832-881
  • [2] Gui G(2005)Upper and lower bounds of temporal and spatial decays for the Navier–Stokes equations J. Differ. Equ. 209 365-391
  • [3] Zhang P(2005)Temporal and spatial decays for the Navier–Stokes equations Proc. Roy. Soc. Edinb. Sect. A 135 461-477
  • [4] Bae H(2012)Existence of strong mild solution of the Navier–Stokes equations in the half space with nondecaying initial data J. Korean Math. Soc. 49 113-138
  • [5] Jin B(2006)Asymptotic behavior for the Navier–Stokes equations in 2D exterior domains J. Funct. Anal. 240 508-529
  • [6] Bae H(2004)Space-time decay of Navier–Stokes flows invariant under rotations Math. Ann. 329 685-706
  • [7] Jin B(2007)New asymptotic profiles of nonstationary solutions of the Navier–Stokes system J. Math. Pures Appl. 88 64-86
  • [8] Bae H(1997)Regularity results for two-dimensional flows of multiphase viscous fluids Arch. Rational Mech. Anal. 137 135-158
  • [9] Jin B(2009)Global smooth solutions to the 2-D inhomogeneous Navier–Stokes equations with variable viscosity Chin. Ann. Math. Ser. B 30 607-630
  • [10] Bae H(2014)Decay estimates of global solution to 2D incompressible Navier–Stokes equations with variable viscosity Discrete Contin. Dyn. Syst. 34 4647-4669