Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems

被引:0
作者
Renato Vitolo
Henk Broer
Carles Simó
机构
[1] University of Exeter,College of Engineering, Mathematics and Physical Sciences
[2] Harrison Building,Johann Bernoulli Institute for Mathematics and Computer Science
[3] University of Groningen,Departament de Matemàtica Aplicada i Anàlisi
[4] Universitat de Barcelona,undefined
来源
Regular and Chaotic Dynamics | 2011年 / 16卷
关键词
bifurcations; invariant tori; resonances; KAM theory; 37M20; 37C55; 37G30;
D O I
暂无
中图分类号
学科分类号
摘要
This paper first summarizes the theory of quasi-periodic bifurcations for dissipative dynamical systems. Then it presents algorithms for the computation and continuation of invariant circles and of their bifurcations. Finally several applications are given for quasiperiodic bifurcations of Hopf, saddle-node and period-doubling type.
引用
收藏
页码:154 / 184
页数:30
相关论文
共 127 条
[11]  
Takens F.(2005)On the Quasi-Periodic J. Differential Equations 216 261-281
[12]  
Wagener F. O. O.(2010)-fold Degenerate Bifurcation Discrete Contin. Dyn. Syst. Ser. S 3 719-768
[13]  
Braaksma B. L. J.(1985)A Parametrised Version of Moser’s Modifying Terms Theorem Inst. Hautes Études Sci. Publ. Math. 61 67-127
[14]  
Broer H.W.(1985)Bifurcations de points fixes elliptiques: I. Courbes invariantes Invent. Math. 80 81-106
[15]  
Huitema G.B.(1987)Bifurcations de points fixes elliptiques: II. Orbites périodiques et ensembles de Cantor invariants Inst. Hautes Études Sci. Publ. Math. 66 5-91
[16]  
Broer H. W.(1998)Bifurcations de points fixes elliptiques: III. Orbites périodiques de “petites” périodes et élimination résonante des couples de courbes invariantes J. Differential Equations 142 305-370
[17]  
Hoo J.(2005)The Quasi-Periodic Centre-Saddle Bifurcation Nonlinearity 18 1735-1769
[18]  
Naudot V.(2006)Bifurcations of Normally Parabolic Tori in Hamiltonian Systems J. Differential Equations 222 233-262
[19]  
Broer H. W.(1993)Umbilical Torus Bifurcations in Hamiltonian Systems Arch. Ration. Mech. Anal. 124 13-42
[20]  
Huitema G.B.(2007)Mixed Spectrum and Rotational Symmetry Internat. J. Bifur. Chaos Appl. Sci. Engrg. 17 2605-2623