Profinite groups with an automorphism of prime order whose fixed points have finite Engel sinks

被引:0
作者
E. I. Khukhro
P. Shumyatsky
机构
[1] University of Lincoln,Charlotte Scott Research Centre for Algebra
[2] University of Brasilia,Department of Mathematics
来源
Monatshefte für Mathematik | 2022年 / 197卷
关键词
Profinite groups; Engel condition; Locally nilpotent; Automorphism; Primary 20E18; 20E36; Secondary 20F19; 20F45;
D O I
暂无
中图分类号
学科分类号
摘要
A right Engel sink of an element g of a group G is a set R(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {R}}}(g)$$\end{document} such that for every x∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in G$$\end{document} all sufficiently long commutators [...[[g,x],x],⋯,x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[...[[g,x],x],\dots ,x]$$\end{document} belong to R(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}(g)$$\end{document}. (Thus, g is a right Engel element precisely when we can choose R(g)={1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {R}}}(g)=\{ 1\}$$\end{document}.) We prove that if a profinite group G admits a coprime automorphism φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} of prime order such that every fixed point of φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} has a finite right Engel sink, then G has an open locally nilpotent subgroup. A left Engel sink of an element g of a group G is a set E(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {E}}}(g)$$\end{document} such that for every x∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in G$$\end{document} all sufficiently long commutators [...[[x,g],g],⋯,g]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[...[[x,g],g],\dots ,g]$$\end{document} belong to E(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {E}}}(g)$$\end{document}. (Thus, g is a left Engel element precisely when we can choose E(g)={1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {E}}(g)=\{ 1\}$$\end{document}.) We prove that if a profinite group G admits a coprime automorphism φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} of prime order such that every fixed point of φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} has a finite left Engel sink, then G has an open pronilpotent-by-nilpotent subgroup.
引用
收藏
页码:111 / 123
页数:12
相关论文
共 20 条
  • [1] Acciarri C(2019)Profinite groups with an automorphism whose fixed points are right Engel Proc. Am. Math. Soc. 147 3691-3703
  • [2] Khukhro EI(1957)Groups and Lie rings having automorphisms without non-trivial fixed points J. London Math. Soc. 32 321-334
  • [3] Shumyatsky P(2018)Almost Engel compact groups J. Algebra 500 439-456
  • [4] Higman G(2019)Compact groups all elements of which are almost right Engel Q. J. Math. 70 879-893
  • [5] Khukhro EI(2020)Compact groups with countable Engel sinks Bull. Math. Sci. 9 2050015-581
  • [6] Shumyatsky P(2021)On finite groups with an automorphism of prime order whose fixed points have bounded Engel sinks Bull. Braz. Math. Soc. 45 578-267
  • [7] Khukhro EI(1959)Finite groups with fixed-point-free automorphosms of prime order Proc. Nat. Acad. Sci. U.S.A. 1 259-566
  • [8] Shumyatsky P(1964)Automorphisms of solvable groups J. Algebra 86 555-331
  • [9] Khukhro EI(1984)Fitting heights of groups and of fixed points J. Algebra 7 325-109
  • [10] Shumyatsky P(1993)Solubility of finite groups admitting a coprime order operator group Boll. Un. Mat. Ital. A 81 103-340