A density result for GSBD and its application to the approximation of brittle fracture energies

被引:0
作者
Flaviana Iurlano
机构
[1] SISSA,
来源
Calculus of Variations and Partial Differential Equations | 2014年 / 51卷
关键词
49Q20; 49J45; 26B30; 74R10; 35A35;
D O I
暂无
中图分类号
学科分类号
摘要
We present an approximation result for functions u:Ω→Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u:\Omega \rightarrow \mathbb {R}^n$$\end{document} belonging to the space GSBD(Ω)∩L2(Ω,Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GSBD(\Omega )\cap L^2(\Omega ,{{\mathbb R}}^n)$$\end{document} with e(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e(u)$$\end{document} square integrable and Hn-1(Ju)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{H}^{n-1}(J_u)$$\end{document} finite. The approximating functions uk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_k$$\end{document} are piecewise continuous functions such that uk→u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_k\rightarrow u$$\end{document} in L2(Ω,Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\Omega ,\mathbb {R}^n)$$\end{document}, e(uk)→e(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e(u_k)\rightarrow e(u)$$\end{document} in L2(Ω,Msymn×n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\Omega ,\mathbb {M}^{n{\times }n}_{sym})$$\end{document}, Hn-1(Juk▵Ju)→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{H}^{n-1}(J_{u_k}\triangle J_u)\rightarrow 0$$\end{document}, and ∫Juk∪Ju|uk±-u±|∧1dHn-1→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _{J_{u_k}\cup J_u}|u_k^\pm -u^\pm |\wedge 1d{\fancyscript{H}}^{n-1}\rightarrow 0$$\end{document}.  As an application, we provide the extension to the vector-valued case of the Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence result in GSBV(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GSBV(\Omega )$$\end{document} proved by Ambrosio and Tortorelli (Commun Pure Appl Math 43:999–1036, 1990; Boll. Un. Mat. Ital. B (7) 6:105–123, 1992).
引用
收藏
页码:315 / 342
页数:27
相关论文
共 28 条
  • [1] Alberti G(1998)Phase transition with the line-tension effect Arch. Rational Mech. Anal. 144 1-46
  • [2] Bouchitté G(1997)Fine properties of functions with bounded deformation Arch. Rational Mech. Anal. 139 201-238
  • [3] Seppecher P(1990)Approximation of functionals depending on jumps by elliptic functionals via Commun. Pure Appl. Math. 43 999-1036
  • [4] Ambrosio L(1992)-convergence Boll. Un. Mat. Ital. B 6 105-123
  • [5] Coscia A(2007)On the approximation of free discontinuity problems Interfaces Free Bound. 9 411-430
  • [6] Dal Maso G(2000)Numerical implementation of the variational formulation for quasi-static brittle fracture J. Mech. Phys. Solids 48 797-826
  • [7] Ambrosio L(2008)Numerical experiments in revisited brittle fracture J. Elast. 91 5-148
  • [8] Tortorelli VM(2004)The variational approach to fracture J. Math. Pures Appl. (9) 83 929-954
  • [9] Ambrosio L.(2005)An approximation result for special functions with bounded deformation J. Math. Pures Appl 84 137-145
  • [10] Tortorelli V.M.(1997)Addendum to: “An approximation result for special functions with bounded deformation” [J. Math. Pures Appl. (9) 83 (2004), no. 7, 929–954; MR2074682] Ann. Univ. Ferrara Sez. VII (N.S.) 43 27-49