Monte Carlo Based Ensemble Forecasting

被引:0
作者
L. Mark Berliner
机构
[1] Ohio State University & National Institute of Statistical Sciences,Mark Berliner, Department of Statistics
[2] Ohio State University,undefined
来源
Statistics and Computing | 2001年 / 11卷
关键词
chaos; importance sampling; kernel density estimation; mixtures; Monte Carlo; numerical weather forecasting; tangent linear approximation;
D O I
暂无
中图分类号
学科分类号
摘要
Ensemble forecasting involves the use of several integrations of a numerical model. Even if this model is assumed to be known, ensembles are needed due to uncertainty in initial conditions. The ideas discussed in this paper incorporate aspects of both analytic model approximations and Monte Carlo arguments to gain some efficiency in the generation and use of ensembles. Efficiency is gained through the use of importance sampling Monte Carlo. Once ensemble members are generated, suggestions for their use, involving both approximation and statistical notions such as kernel density estimation and mixture modeling are discussed. Fully deterministic procedures derived from the Monte Carlo analysis are also described. Examples using the three-dimensional Lorenz system are described.
引用
收藏
页码:269 / 275
页数:6
相关论文
共 17 条
  • [1] Anderson J.L.(1996)Selection of initial conditions for ensemble forecasts in a simple perfect model framework Journal of the Atmospheric Sciences 53 22-36
  • [2] Berliner L.M.(1992)Statistics, probability, and chaos Statistical Science 7 69-122
  • [3] Ehrendorfer M.(1994)The Liouville equation and its potential usefulness for the prediction of forecast skill. Part I: Theory Monthly Weather Review 122 703-713
  • [4] Ehrendorfer M.(1996)Optimal prediction of forecast error covariances through singular vectors Journal of the Atmospheric Sciences 54 286-313
  • [5] Tribbia J.J.(1989)Bayesian inference in econometric models using Monte Carlo integration Econometrica 57 1317-1340
  • [6] Geweke J.F.(1996)Local adaptive importance sampling for multivariate densities with strong nonlinear relationships Journal of the American Statistical Association 91 132-141
  • [7] Givens G.H.(1990)Global numerical weather prediction at the National Meteorological Center Bulletin of the American Meteorological Society 71 1410-1428
  • [8] Raftery A.E.(1992)Adaptive importance sampling in Monte Carlo integration Journal of Statistical Computation and Simulation 41 143-168
  • [9] Kalnay E.M.(1985)Common structure of smoothing techniques in statistics International Statistical Review 53 141-170
  • [10] Kanamitsu M.(1993)Ensemble forecasting at NMC: The generation of perturbations Bulletin of the American Meteorological Society 74 2317-2330