A comparative study of forest methods for time-to-event data: variable selection and predictive performance

被引:0
|
作者
Yingxin Liu
Shiyu Zhou
Hongxia Wei
Shengli An
机构
[1] Southern Medical University,Department of Biostatistics, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research)
来源
BMC Medical Research Methodology | / 21卷
关键词
Survival analysis; Random survival Forest; Conditional inference Forest; Maximally selected rank statistics; Machine learning; Variable selection; Brier score;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Modeling time-to-event (survival) data using classification tree analysis
    Linden, Ariel
    Yarnold, Paul R.
    JOURNAL OF EVALUATION IN CLINICAL PRACTICE, 2017, 23 (06) : 1299 - 1308
  • [42] Random-effects cox proportional hazards model: General variance components methods for time-to-event data
    Pankratz, VS
    de Andrade, M
    Therneau, TM
    GENETIC EPIDEMIOLOGY, 2005, 28 (02) : 97 - 109
  • [43] A sequential threshold cure model for genetic analysis of time-to-event data
    Odegard, J.
    Madsen, P.
    Labouriau, R.
    Gjerde, B.
    Meuwissen, T. H. E.
    JOURNAL OF ANIMAL SCIENCE, 2011, 89 (04) : 943 - 950
  • [44] Survival analysis of time-to-event data in respiratory health research studies
    Kasza, Jessica
    Wraith, Darren
    Lamb, Karen
    Wolfe, Rory
    RESPIROLOGY, 2014, 19 (04) : 483 - 492
  • [45] Performance of several variable-selection methods applied to real ecological data
    Murtaugh, Paul A.
    ECOLOGY LETTERS, 2009, 12 (10) : 1061 - 1068
  • [46] Joint latent class models for longitudinal and time-to-event data: A review
    Proust-Lima, Cecile
    Sene, Mbery
    Taylor, Jeremy M. G.
    Jacqmin-Gadda, Helene
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2014, 23 (01) : 74 - 90
  • [47] Boosting for high-dimensional time-to-event data with competing risks
    Binder, Harald
    Allignol, Arthur
    Schumacher, Martin
    Beyersmann, Jan
    BIOINFORMATICS, 2009, 25 (07) : 890 - 896
  • [48] A Naive Bayes machine learning approach to risk prediction using censored, time-to-event data
    Wolfson, Julian
    Bandyopadhyay, Sunayan
    Elidrisi, Mohamed
    Vazquez-Benitez, Gabriela
    Vock, David M.
    Musgrove, Donald
    Adomavicius, Gediminas
    Johnson, Paul E.
    O'Connor, Patrick J.
    STATISTICS IN MEDICINE, 2015, 34 (21) : 2941 - 2957
  • [49] Survival neural networks for time-to-event prediction in longitudinal study
    Zhang, Jianfei
    Chen, Lifei
    Ye, Yanfang
    Guo, Gongde
    Chen, Rongbo
    Vanasse, Alain
    Wang, Shengrui
    KNOWLEDGE AND INFORMATION SYSTEMS, 2020, 62 (09) : 3727 - 3751
  • [50] Regression with incomplete covariates and left-truncated time-to-event data
    Shen, Hua
    Cook, Richard J.
    STATISTICS IN MEDICINE, 2013, 32 (06) : 1004 - 1015