Generalized inferences of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} = Pr(X>Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pr (X>Y)$$\end{document} for Pareto distribution

被引:0
作者
Sumith Gunasekera
机构
[1] The University of Tennessee at Chattanooga,Department of Mathematics
关键词
Generalized ; value; Generalized test; Pareto distribution; Stress–strength model; Reliability parameter;
D O I
10.1007/s00362-014-0584-8
中图分类号
学科分类号
摘要
The problem of hypothesis testing and interval estimation based on the generalized variable method of the reliability parameter or the probability R=Pr(X>Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R=\Pr (X>Y)$$\end{document} of an item of strength X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} subject to a stress Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} when X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} and Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} are independent two-parameter Pareto distributed random variables is given. We discuss the use of p value as a basis for hypothesis testing. There are no exact or approximate testing procedures and confidence intervals for reliability parameter for two-parameter Pareto stress–strength model available in the literature. A simulation study is given to illustrate the proposed generalized variable method. The generalized size, generalized adjusted and unadjusted powers of the test, generalized coverage probabilities are also discussed by comparing with their classical counterparts.
引用
收藏
页码:333 / 351
页数:18
相关论文
共 48 条
  • [1] Bebu I(2009)Confidence intervals for limited moments and truncated moments in normal and lognormal models Stat Probab Lett 79 375-380
  • [2] Mathew T(1970)The estimation of reliability from stress strength relationships Technometrics 12 49-54
  • [3] Church JD(1986)The estimation of Comm Stat Simul Comput 15 365-388
  • [4] Harris B(2013) in gamma case Stat Papers 54 499-522
  • [5] Constantine K(2013)The simplicity of likelihood based inferences for Model Assist Stat Appl 8 51-60
  • [6] Karson M(2004) and for the ratio of means in the exponential model Comm Stat Theory Methods 33 1715-1731
  • [7] Francés ED(1988)Statistical inferences for availability of a series system with Pareto failure and repair times Ann Stat 16 927-953
  • [8] Montoya JA(1999)New approximate inferential methods for the reliability parameter in a stress-strength model: the normal case Stat Papers 40 99-106
  • [9] Gunasekera S(2006)Theoretical comparison of bootstrap confidence intervals J Amer Stat Assoc 101 254-269
  • [10] Guo H(2008)Estimation of system reliability Stat Papers 49 637-651