Monotonicity of optimized quantum f-divergence

被引:0
作者
Li, Haojian [1 ]
机构
[1] Zentrum Math Techn Univ Munchen, D-85748 Garching, Germany
关键词
Optimized quantum f-divergence; Schwarz map; Monotonicity; Petz recovery map; RELATIVE ENTROPY; CHANNELS;
D O I
10.1007/s11128-024-04376-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Optimized quantum f-divergence was first introduced by Wilde and further explored by Li and Wilde later. Wilde raised the question of whether the monotonicity of optimized quantum f-divergence can be generalized to maps that are not quantum channels. In this paper, we answer this question by generalizing the monotonicity of optimized quantum f-divergences to positive trace preserving maps satisfying a Schwarz inequality. Any 2-positive maps satisfy such a Schwarz inequality. The main tool in this paper is the Petz recovery map.
引用
收藏
页数:8
相关论文
共 17 条
  • [1] Ando T., 1978, LECT NOTES
  • [2] Sandwiched Renyi divergence satisfies data processing inequality
    Beigi, Salman
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (12)
  • [3] Bhatia R., 2013, Matrix Analysis, VVol. 169
  • [4] Carlen E, 2010, CONTEMP MATH, V529, P73
  • [5] Recoverability for optimized quantum f-divergences
    Gao, Li
    Wilde, Mark M.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (38)
  • [6] Jensen's operator inequality
    Hansen, F
    Pedersen, GK
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 : 553 - 564
  • [7] QUANTUM f-DIVERGENCES AND ERROR CORRECTION
    Hiai, Fumio
    Mosonyi, Milan
    Petz, Denes
    Beny, Cedric
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2011, 23 (07) : 691 - 747
  • [8] Hirche C., 2023, ARXIV
  • [9] Jenov A., 2021, ANN HENRI POINCAR, P3234
  • [10] On quantum Renyi entropies: A new generalization and some properties
    Mueller-Lennert, Martin
    Dupuis, Frederic
    Szehr, Oleg
    Fehr, Serge
    Tomamichel, Marco
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (12)