Ergodic behaviour of stochastic parabolic equations

被引:0
作者
Jan Seidler
机构
[1] Academy of Sciences of the Czech republic,Mathematical Institute
来源
Czechoslovak Mathematical Journal | 1997年 / 47卷
关键词
Markov processes; invariant measures; recurrence; stochastic parabolic equations;
D O I
暂无
中图分类号
学科分类号
摘要
The ergodic behaviour of homogeneous strong Feller irreducible Markov processes in Banach spaces is studied; in particular, existence and uniqueness of finite and σ-finite invariant measures are considered. The results obtained are applied to solutions of stochastic parabolic equations.
引用
收藏
页码:277 / 316
页数:39
相关论文
共 42 条
[1]  
Azéma J.(1966)Récurrence fine des processus de Markov Ann. Inst. H. Poincaré Probab. Statist 2 185-220
[2]  
Kaplan-Duflo M.(1967)Mesure invariante sur les classes récurrentes des processus de Markov Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 157-181
[3]  
Revuz D.(1978)Criteria for recurrence and existence of invariant measures for multidimensional diffusions Ann. Probab. 6 541-553
[4]  
Azema J.(1995)Existence, uniqueness and invariant measures for stochastic semilinear equations on Hilbert spaces Probab. Theory Related Fields 102 331-356
[5]  
Kaplan-Duflo M.(1996)Stochastic Cahn-Hilliard equation Nonlinear Anal 26 241-263
[6]  
Revuz D.(1969)Propriétés asymptotiques de probabilités de transition des processus de Markov récurrents Ann. Inst. H. Poincaré Probab. Statist. 5 233-244
[7]  
Bhattacharya R. N.(1995)Ergodicity of the 2-D Navier-Stokes equation under random perturbations Comm. Math. Phys. 171 119-141
[8]  
Chojnowska-Michalik A.(1966)Limit theorems for Markov processes Trans. Amer. Math. Soc. 121 200-209
[9]  
Goldys B.(1983)Random motion of strings and related stochastic evolution equations Nagoya Math. J. 89 129-193
[10]  
Da Prato G.(1994)On weak solutions of stochastic equations in Hilbert spaces Stochastics Stochastics Rep 46 41-51